A067888
Numbers k such that tau(k+1) = tau(k-1) where tau(k) = A000005(k).
Original entry on oeis.org
4, 6, 7, 9, 12, 18, 19, 30, 34, 41, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 103, 108, 124, 129, 137, 138, 142, 144, 150, 153, 160, 180, 183, 184, 185, 186, 192, 198, 199, 202, 204, 214, 216, 218, 220, 228, 231, 236, 240, 243, 244, 247, 248, 249, 266, 270, 282
Offset: 1
-
Select[Range[300], Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
-
is_A067888(n)=n>1&&numdiv(n-1)==numdiv(n+1) \\ M. F. Hasler, Aug 06 2015
A276542
Numbers k such that the k-th and (k+1)st triangular numbers have the same number of divisors.
Original entry on oeis.org
3, 4, 5, 11, 17, 28, 29, 33, 41, 42, 52, 55, 59, 66, 68, 71, 76, 85, 88, 91, 93, 101, 107, 114, 123, 137, 141, 143, 149, 150, 159, 170, 172, 179, 183, 185, 186, 188, 191, 196, 197, 201, 203, 208, 213, 215, 217, 219, 227, 232, 235, 236, 239, 243, 244, 247, 265
Offset: 1
a(3) = 5; T(5) = 5*(5+1)/2 = 15; T(5+1) = 6*(6+1)/2 = 21; 15 and 21 have 4 divisors each.
a(6) = 28; T(28) = 28*(28+1)/2 = 406; T(28+1) = 29*(29+1)/2 = 435; 406 and 435 have 8 divisors each
Cf.
A319035 (the corresponding triangular numbers).
-
T:=List([1..270],n->n*(n+1)/2);; a:=Filtered([1..Length(T)-1],i->Tau(T[i])=Tau(T[i+1])); # Muniru A Asiru, Dec 06 2018
-
[n: n in [1..300] | DivisorSigma(0, n*(n + 1) div 2) eq DivisorSigma(0, (n + 1)*(n + 1 + 1) div 2)]; // Vincenzo Librandi, Dec 06 2018
-
T:= seq(numtheory:-tau(n*(n+1)/2), n=1..1000):
select(t -> T[t]=T[t+1], [$1..999]); # Robert Israel, Apr 09 2017
-
Select[Range[1000], DivisorSigma[0, #*(# + 1)/2] == DivisorSigma[0, (# + 1)*(# + 1 + 1)/2] &]
SequencePosition[DivisorSigma[0,#]&/@Accumulate[Range[300]],{x_,x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 02 2018 *)
-
k=[]; for(n=1, 1000, a=numdiv(n*(n+1)/2); b=numdiv((n+1)*(n+1+1)/2); if(a==b, k=concat(k, n))); k
-
from sympy import divisor_count
for n in range(1,20):
if divisor_count(n*(n+1)/2)==divisor_count((n+1)*(n+2)/2):
print(n, end=', ') # Stefano Spezia, Dec 06 2018
A229254
Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).
Original entry on oeis.org
33, 54, 918, 1240, 3304, 4148, 4187, 7169, 12565, 15085, 19688, 24881, 25019, 26609, 38982, 51835, 53963, 59987, 76360, 77057, 96728, 143369, 150419, 167560, 170561, 205727, 215069, 220817, 278920, 418307, 564857, 731320, 785270, 907254, 910315, 986153
Offset: 1
Divisors of 54 = {1, 2, 3, 6, 9, 18, 27, 54}, divisors of 56 = {1, 2, 4, 7, 8, 14, 28, 56}, both have 8 divisors and sum = 120.
-
Select[Range[10000], DivisorSigma[0, #] == DivisorSigma[0, # + 2] && DivisorSigma[1, #] == DivisorSigma[1, # + 2] &]
-
isok(n) = (numdiv(n) == numdiv(n+2)) && (sigma(n) == sigma(n+2)); \\ Michel Marcus, Sep 20 2013
A276553
Numbers n such that n^2 and (n + 1)^2 have the same number of divisors.
Original entry on oeis.org
2, 14, 15, 21, 33, 34, 38, 44, 57, 75, 81, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 272, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 405, 429, 434, 445
Offset: 1
We see that 14^2 = 196, the divisors of which are 1, 2, 4, 7, 14, 28, 49, 98, 196, and there are nine of them. And we see that 15^2 = 225, the divisors of which are 1, 3, 5, 9, 15, 25, 45, 75, 225, and there are nine of them. Both 14^2 and 15^2 have the same number of divisors, hence 14 is in the sequence.
And we see that 16^2 = 256, the divisors of which are the powers of 2 from 2^0 to 2^8, that's nine divisors. Both 15^2 and 16^2 have the same number of divisors, hence 15 is also in the sequence.
But 16 is not in the sequence, since 17 is prime and 17^2 consequently only has three divisors.
-
N:= 1000: # to get all terms <= N
T:= map(t -> numtheory:-tau(t^2), [$1..N+1]):
select(t -> T[t]=T[t+1], [$1..N]); # Robert Israel, Apr 10 2017
-
Select[Range[1000], DivisorSigma[0, #^2] == DivisorSigma[0, (# + 1)^2] &]
-
k=[]; for(n=1, 1000, a=numdiv(n^2); b=numdiv((n+1)^2); if(a==b, k=concat(k, n))); k
-
from sympy.ntheory import divisor_count
print([n for n in range(1, 501) if divisor_count(n**2) == divisor_count((n + 1)**2)]) # Indranil Ghosh, Apr 10 2017
(Scheme, with Antti Karttunen's IntSeq-library) (define A276553 (ZERO-POS 1 1 A284570)) ;; Antti Karttunen, Apr 15 2017
A276713
Numbers n such that n and n+3 have the same number of divisors (A000005).
Original entry on oeis.org
2, 35, 55, 62, 74, 82, 91, 102, 115, 119, 122, 135, 142, 143, 155, 158, 172, 186, 202, 203, 206, 214, 215, 218, 242, 255, 259, 262, 282, 295, 298, 299, 302, 323, 326, 343, 351, 354, 355, 362, 391, 395, 399, 425, 426, 435, 451, 466, 478, 482, 492, 502, 511, 514
Offset: 1
35 is in sequence because tau(35) = tau(38) = 4.
Cf. Similar sequences with numbers n such that n and n+k have the same number of divisors for k = 1:
A005237, for k = 2:
A062832.
-
[n: n in [1..10000] | NumberOfDivisors(n) eq NumberOfDivisors(n+3)]
-
with(numtheory): A276713:=n->`if`(tau(n) = tau(n+3), n, NULL): seq(A276713(n), n=1..10^3); # Wesley Ivan Hurt, May 02 2017
-
SequencePosition[DivisorSigma[0,Range[600]],{x_,,,x_}][[All,1]] (* Harvey P. Dale, Nov 12 2022 *)
-
isok(n) = numdiv(n) == numdiv(n+3); \\ Michel Marcus, May 03 2017
A330703
Numbers k such that psi(k) = psi(k + 2) where psi(k) is the Dedekind psi function (A001615).
Original entry on oeis.org
6, 9, 12, 14, 18, 20, 33, 44, 62, 70, 92, 108, 116, 138, 164, 175, 212, 254, 280, 308, 320, 332, 348, 356, 452, 490, 524, 558, 572, 692, 716, 764, 833, 932, 956, 1004, 1105, 1124, 1172, 1188, 1436, 1496, 1562, 1593, 1676, 1724, 1772, 1964, 2002, 2036, 2088, 2132
Offset: 1
6 is in the sequence since psi(6) = psi(8) = 12.
A339776
Numbers m such that tau(m) = tau(m + 1) - 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).
Original entry on oeis.org
3, 252003, 293763, 770883, 1444803, 2630883, 6543363, 8421603, 9375843, 18992163, 19731363, 21883683, 22108803, 25786083, 25989603, 32512803, 35259843, 48972003, 98049603, 101566083, 132204003, 155201763, 160224963, 162766563, 187197123, 208455843, 291658083
Offset: 1
tau(3) = 2, tau(4) = 3, tau(5) = 2.
-
[m: m in [2..10^6] | #Divisors(m + 1) - 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
-
d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 - 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
-
isok(m) = my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb+1); \\ Michel Marcus, Dec 18 2020
A339777
Numbers m such that tau(m) = tau(m + 1) + 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).
Original entry on oeis.org
8, 110888, 149768, 1119363, 1172888, 2676495, 3143528, 4782968, 5895183, 8596623, 9168783, 15896168, 19114383, 28174863, 48052623, 50523663, 58186383, 72641528, 82664463, 98168463, 113465103, 139523343, 178810383, 208860303, 223681935, 230675343, 248755983, 249260943
Offset: 1
tau(8) = 4, tau(9) = 3, tau(10) = 4.
-
[m: m in [2..10^6] | #Divisors(m + 1) + 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
-
d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 + 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
Position[Partition[DivisorSigma[0,Range[59*10^5]],3,1],?(#[[1]]==#[[2]]+1==#[[3]]&),1,Heads->False]//Flatten (* _Harvey P. Dale, May 25 2023 *)
-
isok(m) = my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb-1); \\ Michel Marcus, Dec 18 2020
A356766
Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.
Original entry on oeis.org
3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1
For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
-
a={}; n=1; nmax=10; For[k=1, n<=nmax, k++, If[DivisorSigma[0, k] == DivisorSigma[0, k+2] == 2n, AppendTo[a, k]; k=1; n++]]; a (* Stefano Spezia, Aug 26 2022 *)
Flatten[Table[SequencePosition[DivisorSigma[0,Range[27*10^6]],{2n,,2n},1],{n,10}],1][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant but the program will take a long time to run. *) (* _Harvey P. Dale, Jul 01 2023 *)
-
a(n)=for(k=1,+oo,if(numdiv(k)==2*n&&numdiv(k+2)==2*n,return(k)))
Showing 1-9 of 9 results.
Comments