cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A067888 Numbers k such that tau(k+1) = tau(k-1) where tau(k) = A000005(k).

Original entry on oeis.org

4, 6, 7, 9, 12, 18, 19, 30, 34, 41, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 103, 108, 124, 129, 137, 138, 142, 144, 150, 153, 160, 180, 183, 184, 185, 186, 192, 198, 199, 202, 204, 214, 216, 218, 220, 228, 231, 236, 240, 243, 244, 247, 248, 249, 266, 270, 282
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

If (p,p+2) are twin primes, then the composite number p+1 is in this sequence. The primes occurring in this sequence are listed in A067889. See A055574 for the analog with sigma instead of tau. - M. F. Hasler, Aug 06 2015

Crossrefs

Equals A062832 + 1. - Michel Marcus, Feb 11 2018

Programs

  • Mathematica
    Select[Range[300], Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
  • PARI
    is_A067888(n)=n>1&&numdiv(n-1)==numdiv(n+1) \\ M. F. Hasler, Aug 06 2015

A276542 Numbers k such that the k-th and (k+1)st triangular numbers have the same number of divisors.

Original entry on oeis.org

3, 4, 5, 11, 17, 28, 29, 33, 41, 42, 52, 55, 59, 66, 68, 71, 76, 85, 88, 91, 93, 101, 107, 114, 123, 137, 141, 143, 149, 150, 159, 170, 172, 179, 183, 185, 186, 188, 191, 196, 197, 201, 203, 208, 213, 215, 217, 219, 227, 232, 235, 236, 239, 243, 244, 247, 265
Offset: 1

Views

Author

K. D. Bajpai, Apr 09 2017

Keywords

Comments

The k-th triangular number T(k) = k*(k+1)/2.
The lesser member of each twin-prime pair appears in this sequence. Hence, A001359 is a subset of this sequence.

Examples

			a(3) = 5; T(5) = 5*(5+1)/2 = 15; T(5+1) = 6*(6+1)/2 = 21; 15 and 21 have 4 divisors each.
a(6) = 28; T(28) = 28*(28+1)/2 = 406; T(28+1) = 29*(29+1)/2 = 435; 406 and 435 have 8 divisors each
		

Crossrefs

Cf. A319035 (the corresponding triangular numbers).

Programs

  • GAP
    T:=List([1..270],n->n*(n+1)/2);;  a:=Filtered([1..Length(T)-1],i->Tau(T[i])=Tau(T[i+1])); # Muniru A Asiru, Dec 06 2018
    
  • Magma
    [n: n in [1..300] | DivisorSigma(0, n*(n + 1) div 2) eq DivisorSigma(0, (n + 1)*(n + 1 + 1) div 2)]; // Vincenzo Librandi, Dec 06 2018
    
  • Maple
    T:= seq(numtheory:-tau(n*(n+1)/2), n=1..1000):
    select(t -> T[t]=T[t+1], [$1..999]); # Robert Israel, Apr 09 2017
  • Mathematica
    Select[Range[1000], DivisorSigma[0, #*(# + 1)/2] == DivisorSigma[0, (# + 1)*(# + 1 + 1)/2] &]
    SequencePosition[DivisorSigma[0,#]&/@Accumulate[Range[300]],{x_,x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 02 2018 *)
  • PARI
    k=[]; for(n=1, 1000, a=numdiv(n*(n+1)/2); b=numdiv((n+1)*(n+1+1)/2); if(a==b, k=concat(k, n))); k
    
  • Python
    from sympy import divisor_count
    for n in range(1,20):
        if divisor_count(n*(n+1)/2)==divisor_count((n+1)*(n+2)/2):
            print(n, end=', ') # Stefano Spezia, Dec 06 2018

A229254 Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).

Original entry on oeis.org

33, 54, 918, 1240, 3304, 4148, 4187, 7169, 12565, 15085, 19688, 24881, 25019, 26609, 38982, 51835, 53963, 59987, 76360, 77057, 96728, 143369, 150419, 167560, 170561, 205727, 215069, 220817, 278920, 418307, 564857, 731320, 785270, 907254, 910315, 986153
Offset: 1

Views

Author

Jaroslav Krizek, Sep 20 2013

Keywords

Comments

Also numbers k such that A229335(k) = A229335(k+2).
Intersection of A007373 and A062832.

Examples

			Divisors of 54 = {1, 2, 3, 6, 9, 18, 27, 54}, divisors of 56 = {1, 2, 4, 7, 8, 14, 28, 56}, both have 8 divisors and sum = 120.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], DivisorSigma[0, #] == DivisorSigma[0, # + 2] && DivisorSigma[1, #] == DivisorSigma[1, # + 2] &]
  • PARI
    isok(n) = (numdiv(n) == numdiv(n+2)) && (sigma(n) == sigma(n+2)); \\ Michel Marcus, Sep 20 2013

Extensions

More terms from Michel Marcus, Sep 20 2013

A276553 Numbers n such that n^2 and (n + 1)^2 have the same number of divisors.

Original entry on oeis.org

2, 14, 15, 21, 33, 34, 38, 44, 57, 75, 81, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 272, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 405, 429, 434, 445
Offset: 1

Views

Author

K. D. Bajpai, Apr 10 2017

Keywords

Comments

Except for a(1), all the terms are composite.

Examples

			We see that 14^2 = 196, the divisors of which are 1, 2, 4, 7, 14, 28, 49, 98, 196, and there are nine of them. And we see that 15^2 = 225, the divisors of which are 1, 3, 5, 9, 15, 25, 45, 75, 225, and there are nine of them. Both 14^2 and 15^2 have the same number of divisors, hence 14 is in the sequence.
And we see that 16^2 = 256, the divisors of which are the powers of 2 from 2^0 to 2^8, that's nine divisors. Both 15^2 and 16^2 have the same number of divisors, hence 15 is also in the sequence.
But 16 is not in the sequence, since 17 is prime and 17^2 consequently only has three divisors.
		

Crossrefs

Cf. A052213 (a subsequence).
Positions of zeros in A284570.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    T:= map(t -> numtheory:-tau(t^2), [$1..N+1]):
    select(t -> T[t]=T[t+1], [$1..N]); # Robert Israel, Apr 10 2017
  • Mathematica
    Select[Range[1000], DivisorSigma[0, #^2] == DivisorSigma[0, (# + 1)^2] &]
  • PARI
    k=[]; for(n=1, 1000, a=numdiv(n^2); b=numdiv((n+1)^2); if(a==b, k=concat(k, n))); k
    
  • Python
    from sympy.ntheory import divisor_count
    print([n for n in range(1, 501) if divisor_count(n**2) == divisor_count((n + 1)**2)]) # Indranil Ghosh, Apr 10 2017
    (Scheme, with Antti Karttunen's IntSeq-library) (define A276553 (ZERO-POS 1 1 A284570)) ;; Antti Karttunen, Apr 15 2017

A276713 Numbers n such that n and n+3 have the same number of divisors (A000005).

Original entry on oeis.org

2, 35, 55, 62, 74, 82, 91, 102, 115, 119, 122, 135, 142, 143, 155, 158, 172, 186, 202, 203, 206, 214, 215, 218, 242, 255, 259, 262, 282, 295, 298, 299, 302, 323, 326, 343, 351, 354, 355, 362, 391, 395, 399, 425, 426, 435, 451, 466, 478, 482, 492, 502, 511, 514
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Examples

			35 is in sequence because tau(35) = tau(38) = 4.
		

Crossrefs

Cf. A065559 (smallest k such that tau(k) = tau(k+n)), A015861 (sigma(n) = sigma(n+3)), A276714.
Cf. Similar sequences with numbers n such that n and n+k have the same number of divisors for k = 1: A005237, for k = 2: A062832.

Programs

  • Magma
    [n: n in [1..10000] | NumberOfDivisors(n) eq  NumberOfDivisors(n+3)]
    
  • Maple
    with(numtheory): A276713:=n->`if`(tau(n) = tau(n+3), n, NULL): seq(A276713(n), n=1..10^3); # Wesley Ivan Hurt, May 02 2017
  • Mathematica
    SequencePosition[DivisorSigma[0,Range[600]],{x_,,,x_}][[All,1]] (* Harvey P. Dale, Nov 12 2022 *)
  • PARI
    isok(n) = numdiv(n) == numdiv(n+3); \\ Michel Marcus, May 03 2017

A330703 Numbers k such that psi(k) = psi(k + 2) where psi(k) is the Dedekind psi function (A001615).

Original entry on oeis.org

6, 9, 12, 14, 18, 20, 33, 44, 62, 70, 92, 108, 116, 138, 164, 175, 212, 254, 280, 308, 320, 332, 348, 356, 452, 490, 524, 558, 572, 692, 716, 764, 833, 932, 956, 1004, 1105, 1124, 1172, 1188, 1436, 1496, 1562, 1593, 1676, 1724, 1772, 1964, 2002, 2036, 2088, 2132
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2019

Keywords

Examples

			6 is in the sequence since psi(6) = psi(8) = 12.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[10^3], psi[#] == psi[# + 2] &]

A339776 Numbers m such that tau(m) = tau(m + 1) - 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

3, 252003, 293763, 770883, 1444803, 2630883, 6543363, 8421603, 9375843, 18992163, 19731363, 21883683, 22108803, 25786083, 25989603, 32512803, 35259843, 48972003, 98049603, 101566083, 132204003, 155201763, 160224963, 162766563, 187197123, 208455843, 291658083
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Corresponding values of tau(a(n)): 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) + 1, tau(a(n))]: [2, 3, 2], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], [8, 9, 8], ...
a(n) is one less than a perfect square. - David A. Corneth, Dec 29 2020

Examples

			tau(3) = 2, tau(4) = 3, tau(5) = 2.
		

Crossrefs

Subsequence of A005563.
Intersection of A062832 and A055927.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m + 1) - 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
    
  • Mathematica
    d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 - 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
  • PARI
    isok(m) =  my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb+1); \\ Michel Marcus, Dec 18 2020

Extensions

More terms from Amiram Eldar, Dec 16 2020

A339777 Numbers m such that tau(m) = tau(m + 1) + 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

8, 110888, 149768, 1119363, 1172888, 2676495, 3143528, 4782968, 5895183, 8596623, 9168783, 15896168, 19114383, 28174863, 48052623, 50523663, 58186383, 72641528, 82664463, 98168463, 113465103, 139523343, 178810383, 208860303, 223681935, 230675343, 248755983, 249260943
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Corresponding values of tau(a(n)): 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) - 1, tau(a(n))]: [4, 3, 4], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], ...
a(n) is one less than a perfect square. - David A. Corneth, Dec 29 2020

Examples

			tau(8) = 4, tau(9) = 3, tau(10) = 4.
		

Crossrefs

Subsequence of A005563.
Intersection of A062832 and A068208.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m + 1) + 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)]
    
  • Mathematica
    d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 + 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* Amiram Eldar, Dec 17 2020 *)
    Position[Partition[DivisorSigma[0,Range[59*10^5]],3,1],?(#[[1]]==#[[2]]+1==#[[3]]&),1,Heads->False]//Flatten (* _Harvey P. Dale, May 25 2023 *)
  • PARI
    isok(m) =  my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb-1); \\ Michel Marcus, Dec 18 2020

Extensions

More terms from Amiram Eldar, Dec 16 2020

A356766 Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.

Original entry on oeis.org

3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 26 2022

Keywords

Examples

			For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
		

Crossrefs

Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), A356743 (m=6), A356744 (m=8).

Programs

Extensions

More terms from Jinyuan Wang, Aug 28 2022
Showing 1-9 of 9 results.