cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A096008 Irregular triangle read by rows where n-th row contains all quadratic residues (including zero) mod n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 4, 0, 1, 4, 7, 0, 1, 4, 5, 6, 9, 0, 1, 3, 4, 5, 9, 0, 1, 4, 9, 0, 1, 3, 4, 9, 10, 12, 0, 1, 2, 4, 7, 8, 9, 11, 0, 1, 4, 6, 9, 10, 0, 1, 4, 9, 0, 1, 2, 4, 8, 9, 13, 15, 16, 0, 1, 4, 7, 9, 10, 13, 16, 0, 1, 4, 5, 6, 7, 9, 11, 16, 17, 0, 1, 4, 5, 9, 16
Offset: 1

Views

Author

Cino Hilliard, Jul 20 2004

Keywords

Examples

			The table starts:
  [1]  [0]
  [2]  [0, 1]
  [3]  [0, 1]
  [4]  [0, 1]
  [5]  [0, 1, 4]
  [6]  [0, 1, 3, 4]
  [7]  [0, 1, 2, 4]
  [8]  [0, 1, 4]
  [9]  [0, 1, 4, 7]
  [10] [0, 1, 4, 5, 6, 9]
  ...
		

Crossrefs

Cf. A046071 (without zeros), A000224 (row lengths), A063987.
Last elements of rows give A047210.
Row sums give A165909.

Programs

  • Haskell
    a096008 n k = a096008_tabf !! (n-1) !! (k-1)
    a096008_row n = a096008_tabf !! (n-1)
    a096008_tabf = [0] : map (0 :) a046071_tabf
    -- Reinhard Zumkeller, May 10 2015
    
  • Maple
    q := n -> sort(convert({seq(i^2 mod n, i=0..n-1)}, list));
    # N. J. A. Sloane, Feb 09 2011
    # Alternative:
    QR := (a, n) -> NumberTheory:-QuadraticResidue(a, n):
    for n from 1 to 10 do print(select(a -> 1 = QR(a, n), [seq(0..n-1)])) od:
    # Peter Luschny, Jun 02 2024
  • Mathematica
    row[n_] := Table[PowerMod[k, 2, n], {k, 0, n-1}] // Union; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Sep 09 2013 *)
    ResourceFunction["QuadraticResidues"] /@ Range[20] // Flatten  (* Peter Luschny, May 23 2024 *)
  • PARI
    T(n) = {local(v,r,i,j,k); v=vector(n,i,0); for(i=0,floor(n/2),v[i^2%n+1]=1); k=sum(i=1,n,v[i]); j=0; r=vector(k); for(i=1,n, if(v[i], j++; r[j]=i-1)); r}
    
  • SageMath
    for n in range(1, 11): print(quadratic_residues(n)) # Peter Luschny, Jun 02 2024

Extensions

Edited by Franklin T. Adams-Watters, Nov 07 2006

A130290 Number of nonzero quadratic residues modulo the n-th prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.
From Vladimir Shevelev, Jun 18 2016: (Start)
a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).
Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)
a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - Nicholas Leonard, Oct 02 2022

Examples

			a(1)=1 since the only nonzero element of Z/2Z equals its square.
a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.
a(1000000) = 7742931 = (prime(1000000)-1)/2.
		

Crossrefs

Essentially the same as A005097.
Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.
Appears in A217983. - Johannes W. Meijer, Oct 25 2012

Programs

Formula

a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }
a(n) = A055034(A000040(n)), n>=1. - Wolfdieter Lang, Sep 20 2012
a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - M. F. Hasler, Dec 13 2019

A076409 Sum of the quadratic residues of prime(n).

Original entry on oeis.org

1, 1, 5, 7, 22, 39, 68, 76, 92, 203, 186, 333, 410, 430, 423, 689, 767, 915, 1072, 994, 1314, 1343, 1577, 1958, 2328, 2525, 2369, 2675, 2943, 3164, 3683, 3930, 4658, 4587, 5513, 5134, 6123, 6520, 6012, 7439, 7518, 8145, 7831, 9264, 9653, 8955, 10761, 11596
Offset: 1

Views

Author

R. K. Guy, Oct 08 2002

Keywords

Comments

Row sums of A063987. - R. J. Mathar, Jan 08 2015
prime(n) divides a(n) for n > 2. This is implied by a variant of Wolstenholme's theorem (see Hardy & Wright reference). - Isaac Saffold, Jun 21 2018

Examples

			If n = 3, then p = 5 and a(3) = 1 + 4 = 5. If n = 4, then p = 7 and a(4) = 1 + 4 + 2 = 7. If n = 5, then p = 11 and a(5) = 1 + 4 + 9 + 5 + 3 = 22. - _Michael Somos_, Jul 01 2018
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, 1960, p. 88-90.
  • Kenneth A. Ribet, Modular forms and Diophantine questions, Challenges for the 21st century (Singapore 2000), 162-182; World Sci. Publishing, River Edge NJ 2001; Math. Rev. 2002i:11030.

Crossrefs

Cf. A076410.
Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.

Programs

  • Maple
    A076409 := proc(n)
      local a,p,i ;
      p := ithprime(n) ;
      a := 0 ;
      for i from 1 to p-1 do
        if numtheory[legendre](i,p) = 1 then
           a := a+i ;
        end if;
      end do;
      a ;
    end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Join[{1,1}, Table[ Apply[ Plus, Flatten[ Position[ Table[ JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], {n, 3, 48}]]
    Join[{1}, Table[p=Prime[n]; If[Mod[p,4]==1, p(p-1)/4, Sum[PowerMod[k,2, p],{k,p/2}]], {n,2,1000}]] (* Zak Seidov, Nov 02 2011 *)
    a[ n_] := If[ n < 3, Boole[n > 0], With[{p = Prime[n]}, Sum[ Mod[k^2, p], {k, (p - 1)/2}]]]; (* Michael Somos, Jul 01 2018 *)
  • PARI
    a(n,p=prime(n))=if(p<5,return(1)); if(k%4==1, return(p\4*p)); sum(k=1,p-1,k^2%p) \\ Charles R Greathouse IV, Feb 21 2017

Formula

If prime(n) = 4k+1 then a(n) = k*(4k+1).
For n>2 if prime(n) = 4k+3 then a(n) = (k - b)*(4k+3) where b = (h(-p) - 1) / 2; h(-p) = A002143. For instance. If n=5, p=11, k=2, b=(1-1)/2=0 and a(5) = 2*11 = 22. If n=20, p=71, k=17, b=(7-1)/2=3 and a(20) = 14*71 = 994. - Andrés Ventas, Mar 01 2021

Extensions

Edited and extended by Robert G. Wilson v, Oct 09 2002

A048152 Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 4, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0
Offset: 1

Views

Author

Keywords

Examples

			Rows:
  0;
  1, 0;
  1, 1, 0;
  1, 0, 1, 0;
  1, 4, 4, 1, 0;
  1, 4, 3, 4, 1, 0;
		

Crossrefs

Cf. A060036.
Cf. A225126 (central terms).
Cf. A070430 (row 5), A070431 (row 6), A053879 (row 7), A070432 (row 8), A008959 (row 10), A070435 (row 12), A070438 (row 15), A070422 (row 20).
Cf. A046071 (in ascending order, without zeros and duplicates).
Cf. A063987 (for primes, in ascending order, without zeros and duplicates).

Programs

  • Haskell
    a048152 n k = a048152_tabl !! (n-1) !! (k-1)
    a048152_row n = a048152_tabl !! (n-1)
    a048152_tabl = zipWith (map . flip mod) [1..] a133819_tabl
    -- Reinhard Zumkeller, Apr 29 2013
  • Mathematica
    Flatten[Table[PowerMod[k,2,n],{n,15},{k,n}]] (* Harvey P. Dale, Jun 20 2011 *)

Formula

T(n,k) = A133819(n,k) mod n, k = 1..n. - Reinhard Zumkeller, Apr 29 2013
T(n,k) = (T(n,k-1) + (2k+1)) mod n. - Andrés Ventas, Apr 06 2021

A046071 Triangle of nonzero quadratic residues mod n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 3, 4, 1, 2, 4, 1, 4, 1, 4, 7, 1, 4, 5, 6, 9, 1, 3, 4, 5, 9, 1, 4, 9, 1, 3, 4, 9, 10, 12, 1, 2, 4, 7, 8, 9, 11, 1, 4, 6, 9, 10, 1, 4, 9, 1, 2, 4, 8, 9, 13, 15, 16, 1, 4, 7, 9, 10, 13, 16, 1, 4, 5, 6, 7, 9, 11, 16, 17, 1, 4, 5, 9, 16, 1, 4, 7, 9, 15, 16, 18, 1, 3, 4, 5, 9, 11, 12
Offset: 2

Views

Author

Keywords

Comments

Rows start with 1's.

Examples

			1,
1,
1,
1, 4,
1, 3, 4,
1, 2, 4,
1, 4,
1, 4, 7,
1, 4, 5, 6, 9,
1, 3, 4, 5, 9,
1, 4, 9,
1, 3, 4, 9, 10, 12,
1, 2, 4, 7, 8, 9, 11
1, 4, 6, 9, 10,
- _Geoffrey Critzer_, Apr 03 2015
		

Crossrefs

Cf. A105612 (row lengths), A165909 (row sums), A372651 (row products).
Cf. A096008 (including zeros), A063987.

Programs

  • Haskell
    import Data.List (sort, nub, genericIndex)
    a046071 n k = genericIndex a046071_tabf (n-2) !! (k-1)
    a046071_row n = genericIndex a046071_tabf (n-2)
    a046071_tabf = f [1] 2 3 where
       f qs@(q:_) i j = ys : f ((q + j) : qs) (i + 1) (j + 2) where
                        ys = nub $ sort $ filter (> 0) $ map (flip mod i) qs
    -- Reinhard Zumkeller, May 10 2015
    
  • Maple
    seq(op(select(numtheory:-quadres=1,[$1..n-1],n)),n=2..30); # Robert Israel, Apr 03 2015
  • Mathematica
    residueQ[n_, k_] := Length[ Select[ Range[ Floor[k/2]]^2, Mod[#, k] == n & , 1]] == 1; row[n_] := Select[ Range[n-1], residueQ[#, n]& ]; Table[row[n], {n, 2, 22}] // Flatten (* Jean-François Alcover, Oct 23 2012 *)
    row[n_] := Table[PowerMod[k, 2, n], {k, 0, n-1}] // Union // Rest; Table[row[n], {n, 2, 22}] // Flatten (* Jean-François Alcover, Jul 07 2019 *)
  • PARI
    residue(n,m)={local(r);r=0;for(i=0,floor(m/2),if(i^2%m==n,r=1));r} \\ Michael B. Porter, May 03 2010
    
  • SageMath
    for n in range(2, 16): print(quadratic_residues(n)[1:]) # Peter Luschny, Jun 02 2024

Extensions

Edited by Franklin T. Adams-Watters, Nov 07 2006

A130291 Number of quadratic residues (including 0) modulo the n-th prime.

Original entry on oeis.org

2, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

The number of squares (quadratic residues including 0) modulo a prime p (sequence A096008 with every "1" prefixed by a "0") equals 1+floor(p/2), or ceiling(p/2) = (p+1)/2 if p is odd. (In fields of characteristic 2, all elements are squares.) See A130290(n)=A130291(n)-1 for number of nonzero residues. For all n>0, A130291(n+1) = A111333(n+1) = A006254(n) = A005097(n)-1 = A102781(n+1)-1 = A102781(n+1)-1 = A130290(n+1)-1.

Examples

			a(1)=2 since both elements of Z/2Z are squares.
a(3)=0 since 0=0^2, 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are squares in Z/5Z.
a(1000000) = 7742932 = (p[1000000]+1)/2.
		

Crossrefs

Essentially the same as A006254.
Cf. A005097 (Odd primes - 1)/2, A102781 (Integer part of n#/(n-2)#/2#), A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130290 (number of nonzero residues modulo primes).

Programs

Formula

a(n) = floor( A000040(n)/2 )+1

A230077 Table a(n,m) giving in row n all k from {1, 2, ..., prime(n)-1} for which the Legendre symbol (k/prime(n)) = +1, for odd prime(n).

Original entry on oeis.org

1, 1, 4, 1, 4, 2, 1, 4, 9, 5, 3, 1, 4, 9, 3, 12, 10, 1, 4, 9, 16, 8, 2, 15, 13, 1, 4, 9, 16, 6, 17, 11, 7, 5, 1, 4, 9, 16, 2, 13, 3, 18, 12, 8, 6, 1, 4, 9, 16, 25, 7, 20, 6, 23, 13, 5, 28, 24, 22, 1, 4, 9, 16, 25, 5, 18, 2, 19, 7, 28, 20, 14, 10, 8
Offset: 2

Views

Author

Wolfdieter Lang, Oct 25 2013

Keywords

Comments

The length of row n is r(n) = (prime(n) - 1)/2, with prime(n) = A000040(n), n >= 2.
If k from {1, 2, ..., p-1} appears in row n then the Legendre symbol (k/prime(n)) = +1 otherwise it is -1.
The Legendre symbol (k/p), p an odd prime and gcd(k,p) = 1, is +1 if there exists an integer x with x^2 == k (mod p) and -1 otherwise. It is sufficient to consider k from {1, 2, ..., p-1} (gcd(0,p) = p, not 1) because (k/p) = ((k + l*p)/p) for integer l. Because (p - x)^2 == x^2 (mod p), it is also sufficient to consider only x^2 from {1^2, 2^2, ..., ((p-1)/2)^2} which are pairwise incongruent modulo p. See the Hardy-Wright reference. p. 68-69.
For odd primes p one has for the Legendre symbol ((p-1)/p) = (-1/p) = (-1)^(r(n)) (see above for the row length r(n), and theorem 82, p. 69 of Hardy-Wright), and this is +1 for prime p == 1 (mod 4) and -1 for p == 3 (mod 4). Therefore k = p-1 appears in row n iff p = prime(n) is from A002144 = 5, 13, 17, 29, 37, 41,...
For n>=4 (prime(n)>=7) at least one of the integers 2, 3, or 6 appears in every row. - Geoffrey Critzer, May 01 2015

Examples

			The irregular table a(n,m) begins (here p(n)=prime(n)):
n, p(n)\m 1 2 3  4  5  6   7   8   9  10  11  12  13  14  15
2,   3:   1
3,   5:   1 4
4,   7:   1 4 2
5,  11:   1 4 9  5  3
6,  13:   1 4 9  3 12 10
7,  17:   1 4 9 16  8  2  15  13
8,  19:   1 4 9 16  6 17  11   7   5
9,  23:   1 4 9 16  2 13   3  18  12   8   6
10, 29:   1 4 9 16 25  7  20   6  23  13   5  28  24  22
11, 31    1 4 9 16 25  5  18   2  19   7  28  20  14  10   8
...
Row n=12, p(n)=37: 1, 4, 9, 16, 25, 36, 12, 27, 7, 26, 10, 33, 21, 11, 3, 34, 30, 28.
Row n=13, p(n)=41: 1, 4, 9, 16, 25, 36, 8, 23, 40, 18, 39, 21, 5, 32, 20, 10, 2, 37, 33, 31.
(2/p) = +1 for n=4, p(4) = 7; p(7) = 17, p(9) = 23, p(11) = 31, p(13) = 41, ... This leads to A001132 (primes 1 or 7 (mod 8)).
4 = 5 - 1 appears in row n=3 for p(3)=5 because 5 is from A002144. 10 cannot appear in row 5 for p(5)=11 because 11 == 3 (mod 4), hence 11 is not in A002144.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, 2003.

Crossrefs

Programs

  • Maple
    T:= n-> (p-> seq(irem(m^2, p), m=1..(p-1)/2))(ithprime(n)):
    seq(T(n), n=2..12);  # Alois P. Heinz, May 07 2015
  • Mathematica
    Table[Table[Mod[a^2, p], {a, 1, (p - 1)/2}], {p,
    Prime[Range[2, 20]]}] // Grid (* Geoffrey Critzer, Apr 30 2015 *)

Formula

a(n,m) = m^2 (mod prime(n)), n >= 2, where prime(n) = A000040(n), m = 1, 2, ..., (prime(n) - 1)/2.

A269595 Irregular triangle in which n-th row the gives quadratic residues prime(n)- m modulo prime(n), for m from {1, 2, ..., prime(n)-1}, in increasing order.

Original entry on oeis.org

1, 2, 1, 4, 3, 5, 6, 2, 6, 7, 8, 10, 1, 3, 4, 9, 10, 12, 1, 2, 4, 8, 9, 13, 15, 16, 2, 3, 8, 10, 12, 13, 14, 15, 18, 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28
Offset: 1

Views

Author

Wolfdieter Lang, Mar 06 2016

Keywords

Comments

The length of row 1 is 1 and of row n, n >= 2, is (prime(n)-1)/2, where prime(n) = A000040(n).

Examples

			The irregular triangle T(n, k) begins (P(n) is here prime(n)):
n, P(n)\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14
1,   2:   1
2,   3:   2
3,   5:   1  4
4,   7:   1  2  4
5,  11:   1  3  4  5  9
6:  13:   1  3  4  9 10 12
7,  17:   1  2  4  8  9 13 15 16
8,  19:   1  4  5  6  7  9 11 16 17
9,  23:   1  2  3  4  6  8  9 12 13 16 18
10, 29:   1  4  5  6  7  9 13 16 20 22 23 24 25 28
...
		

Crossrefs

Programs

  • Mathematica
    t = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, 10}]; Table[Prime@ n - t[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ t}, {k, (Prime@ n - 1)/2}] /. {} -> 1 // Flatten (* Michael De Vlieger, Mar 31 2016, after Jean-François Alcover at A063987 *)

Formula

For n = 1, prime(1) = 2: 1, and for odd primes n >= 2: the increasing values of m from {1, 2, ..., p-1} with the Legendre symbol (-m/prime(n)) = + 1.
T(n, k) = prime(n) - A063987(n,(prime(n)-1)/2-k+1). k=1..(prime(n)-1)/2, for n >= 2, and T(1, 1) = 1.

A278580 Numbers n such that Jacobi(n,23) = 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 41, 47, 48, 49, 50, 52, 54, 55, 58, 59, 62, 64, 70, 71, 72, 73, 75, 77, 78, 81, 82, 85, 87, 93, 94, 95, 96, 98, 100, 101, 104, 105, 108, 110, 116, 117, 118, 119, 121, 123, 124, 127, 128, 131, 133, 139, 140, 141, 142, 144, 146
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Comments

Important for the study of Ramanujan numbers A000594.
The first 11 terms, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, are the quadratic residues mod 23 (see row 23 of A063987).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,6,8,9,12,13,16,18,24},90] (* Harvey P. Dale, Jun 25 2020 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+2*x^4+2*x^5+x^6+3*x^7+x^8+3*x^9+2*x^10+5*x^11) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)) + O(x^100)) \\ Colin Barker, Nov 30 2016

Formula

From Colin Barker, Nov 30 2016: (Start)
a(n+11) = a(n) + 23.
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
G.f.: x*(1 +x +x^2 +x^3 +2*x^4 +2*x^5 +x^6 +3*x^7 +x^8 +3*x^9 +2*x^10 +5*x^11) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10))
(End)

A010385 Squares mod 23.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18
Offset: 1

Views

Author

Keywords

Crossrefs

Row 23 of A096008. Row 9 of A063987. A028736 (complement), A278580.

Programs

Showing 1-10 of 24 results. Next