A132750 A132749 * [1, 2, 3, ...] = A007318 * A065190.
1, 4, 9, 21, 49, 113, 257, 577, 1281, 2817, 6145, 13313, 28673, 61441, 131073, 278529, 589825, 1245185, 2621441, 5505025, 11534337, 24117249, 50331649, 104857601, 218103809, 452984833, 939524097, 1946157057, 4026531841
Offset: 0
Examples
a(3) = 21 = (1, 3, 3, 1) dot (1, 3, 2, 5) = (1 + 9 + 6 + 5) = 21; where A065190 = (1, 3, 2, 5, 4, 7, 6, 9, ...).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Jelinek, T. Mansour, M. Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Lemma 4.21 (sequence starting 1, 1, 2, 4, 9, 21, .... with offset 0).
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Programs
-
GAP
Concatenation([1], List([1..30], n-> n*2^(n-1) + 2^n + 1 )); # G. C. Greubel, Nov 20 2019
-
Magma
[n*2^(n-1) + 2^n + 1 - 0^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 26 2014
-
Maple
A132750:=n->n*2^(n-1)+2^n+1-0^n: seq(A132750(n), n=0..30); # Wesley Ivan Hurt, Sep 26 2014
-
Mathematica
Join[{1}, Table[n*2^(n-1) +2^n +1, {n, 30}]] (* Wesley Ivan Hurt, Sep 26 2014 *) Join[{1}, LinearRecurrence[{5,-8,4}, {4,9,21}, 30]] (* Vincenzo Librandi, Apr 01 2017 *)
-
PARI
vector(31, n, if(n==1, 1, (n-1)*2^(n-2) + 2^(n-1) + 1)) \\ G. C. Greubel, Nov 20 2019
-
Sage
[1]+[n*2^(n-1) + 2^n + 1 for n in (1..30)] # G. C. Greubel, Nov 20 2019
Formula
A132749 as an infinite lower triangular matrix * vector [1, 2, 3, ...]. Binomial transform of A065190 (with an incorrect offset)
Row sums of triangle A135224. - Gary W. Adamson, Nov 23 2007
G.f.: (1-x-3*x^2+4*x^3)/((1-x)*(1-2*x)^2). - Colin Barker, Aug 09 2012
a(n) = n*2^(n-1) + 2^n + 1 - 0^n. - Tim Smith, Sep 25 2014
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - Wesley Ivan Hurt, Sep 26 2014
E.g.f.: -1 + exp(x) + (1+x)*exp(2*x). - G. C. Greubel, Nov 20 2019
Comments