cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A114113 a(n) = sum{k=1 to n} (A114112(k)). (For n>=2, a(n) = sum{k=1 to n} (A014681(k)) =sum{k=1 to n} (A103889(k)).).

Original entry on oeis.org

1, 3, 7, 10, 16, 21, 29, 36, 46, 55, 67, 78, 92, 105, 121, 136, 154, 171, 191, 210, 232, 253, 277, 300, 326, 351, 379, 406, 436, 465, 497, 528, 562, 595, 631, 666, 704, 741, 781, 820, 862, 903, 947, 990, 1036, 1081, 1129, 1176, 1226, 1275, 1327, 1378, 1432
Offset: 1

Views

Author

Leroy Quet, Nov 13 2005

Keywords

Comments

a(n) is not divisible by (A114112(n+1)).
Sequence is A130883 union A014105 - {0,2}. - Anthony Hernandez, Sep 08 2016

Crossrefs

Programs

  • Magma
    I:=[1,3,7,10,16]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Mar 13 2018
    
  • Mathematica
    Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 7, 10, 16}, 52]] (* Jean-François Alcover, Sep 22 2017 *)
    CoefficientList[Series[(1 + x + x^2 -2 x^3 + x^4)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 13 2018 *)
  • Python
    def A114113(n): return 1 if n == 1 else (m:=n//2)*(n+1) + (n+1-m)*(n-2*m) # Chai Wah Wu, May 24 2022

Formula

a(1)=1. a(2n) = n*(2n+1). a(2n+1) = 2n^2 +3n +2.
From R. J. Mathar, Nov 04 2008: (Start)
a(n) = A026035(n+1) - A026035(n), n>1.
G.f.: x(1+x+x^2-2x^3+x^4)/((1+x)(1-x)^3).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>5. (End)
This is (essentially) 1 + A084265, - N. J. A. Sloane, Mar 12 2018

Extensions

More terms from R. J. Mathar, Aug 31 2007

A014682 The Collatz or 3x+1 function: a(n) = n/2 if n is even, otherwise (3n+1)/2.

Original entry on oeis.org

0, 2, 1, 5, 2, 8, 3, 11, 4, 14, 5, 17, 6, 20, 7, 23, 8, 26, 9, 29, 10, 32, 11, 35, 12, 38, 13, 41, 14, 44, 15, 47, 16, 50, 17, 53, 18, 56, 19, 59, 20, 62, 21, 65, 22, 68, 23, 71, 24, 74, 25, 77, 26, 80, 27, 83, 28, 86, 29, 89, 30, 92, 31, 95, 32, 98, 33, 101, 34, 104
Offset: 0

Views

Author

Keywords

Comments

This is the function usually denoted by T(n) in the literature on the 3x+1 problem. See A006370 for further references and links.
Intertwining of sequence A016789 '2,5,8,11,... ("add 3")' and the nonnegative integers.
a(n) = log_2(A076936(n)). - Amarnath Murthy, Oct 19 2002
The average value of a(0), ..., a(n-1) is A004526(n). - Amarnath Murthy, Oct 19 2002
Partial sums are A093353. - Paul Barry, Mar 31 2008
Absolute first differences are essentially in A014681 and A103889. - R. J. Mathar, Apr 05 2008
Only terms of A016789 occur twice, at positions given by sequences A005408 (odd numbers) and A016957 (6n+4): (1,4), (3,10), (5,16), (7,22), ... - Antti Karttunen, Jul 28 2017
a(n) represents the unique congruence class modulo 2n+1 that is represented an odd number of times in any 2n+1 consecutive oblong numbers (A002378). This property relates to Jim Singh's 2018 formula, as n^2 + n is a relevant oblong number. - Peter Munn, Jan 29 2022

Examples

			a(3) = -3*(-1) - 2*1 - 1*(-1) - 0*1 + 1*(-1) + 2*1 + 3*(-1) + 4*1 + 5*(-1) + 6*1 = 5. - _Bruno Berselli_, Dec 14 2015
		

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.

Crossrefs

Programs

  • Haskell
    a014682 n = if r > 0 then div (3 * n + 1) 2 else n'
                where (n', r) = divMod n 2
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Magma
    [IsOdd(n) select (3*n+1)/2 else n/2: n in [0..52]]; // Vincenzo Librandi, Sep 28 2018
  • Maple
    T:=proc(n) if n mod 2 = 0 then n/2 else (3*n+1)/2; fi; end; # N. J. A. Sloane, Jan 31 2011
    A076936 := proc(n) option remember ; local apr,ifr,me,i,a ; if n <=2 then n^2 ; else apr := mul(A076936(i),i=1..n-1) ; ifr := ifactors(apr)[2] ; me := -1 ; for i from 1 to nops(ifr) do me := max(me, op(2,op(i,ifr))) ; od ; me := me+ n-(me mod n) ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; if a = A076936(n-1) then me := me+n ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; fi ; RETURN(a) ; fi ; end: A014682 := proc(n) log[2](A076936(n)) ; end: for n from 1 to 85 do printf("%d, ",A014682(n)) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    Collatz[n_?OddQ] := (3n + 1)/2; Collatz[n_?EvenQ] := n/2; Table[Collatz[n], {n, 0, 79}] (* Alonso del Arte, Apr 21 2011 *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 2, 1, 5}, 70] (* Jean-François Alcover, Sep 23 2017 *)
    Table[If[OddQ[n], (3 n + 1) / 2, n / 2], {n, 0, 60}] (* Vincenzo Librandi, Sep 28 2018 *)
  • PARI
    a(n)=if(n%2,3*n+1,n)/2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n)=if(n<2,2*n,(n^2-n-1)%(2*n+1)) \\ Jim Singh, Sep 28 2018
    
  • Python
    def a(n): return n//2 if n%2==0 else (3*n + 1)//2
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 29 2017
    

Formula

From Paul Barry, Mar 31 2008: (Start)
G.f.: x*(2 + x + x^2)/(1-x^2)^2.
a(n) = (4*n+1)/4 - (2*n+1)*(-1)^n/4. (End)
a(n) = -a(n-1) + a(n-2) + a(n-3) + 4. - John W. Layman
For n > 1 this is the image of n under the modified "3x+1" map (cf. A006370): n -> n/2 if n is even, n -> (3*n+1)/2 if n is odd. - Benoit Cloitre, May 12 2002
O.g.f.: x*(2+x+x^2)/((-1+x)^2*(1+x)^2). - R. J. Mathar, Apr 05 2008
a(n) = 5/4 + (1/2)*((-1)^n)*n + (3/4)*(-1)^n + n. - Alexander R. Povolotsky, Apr 05 2008
a(n) = Sum_{i=-n..2*n} i*(-1)^i. - Bruno Berselli, Dec 14 2015
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k) + (-1)^k. - Wesley Ivan Hurt, Sep 20 2017
a(n) = (n^2-n-1) mod (2*n+1) for n > 1. - Jim Singh, Sep 26 2018
The above formula can be rewritten to show a pattern: a(n) = (n*(n+1)) mod (n+(n+1)). - Peter Munn, Jan 29 2022
Binary: a(n) = (n shift left (n AND 1)) - (n shift right 1) = A109043(n) - A004526(n). - Rudi B. Stranden, Jun 15 2021
From Rudi B. Stranden, Mar 21 2022: (Start)
a(n) = A064455(n+1) - 1, relating the number ON cells in row n of cellular automaton rule 54.
a(n) = 2*n - A071045(n).
(End)
E.g.f.: (1 + x)*sinh(x)/2 + 3*x*cosh(x)/2 = ((4*x+1)*e^x + (2*x-1)*e^(-x))/4. - Rénald Simonetto, Oct 20 2022
a(n) = n*(n mod 2) + ceiling(n/2) = A193356(n) + A008619(n+1). - Jonathan Shadrach Gilbert, Mar 12 2023
a(n) = 2*a(n-2) - a(n-4) for n > 3. - Chai Wah Wu, Apr 17 2024

Extensions

Edited by N. J. A. Sloane, Apr 26 2008, at the suggestion of Artur Jasinski
Edited by N. J. A. Sloane, Jan 31 2011

A004442 Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.

Original entry on oeis.org

1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30, 33, 32, 35, 34, 37, 36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52, 55, 54, 57, 56, 59, 58, 61, 60, 63, 62, 65, 64, 67, 66, 69
Offset: 0

Views

Author

Keywords

Comments

A self-inverse permutation of the natural numbers.
Nonnegative numbers rearranged with least disturbance to maintain a(n) not equal to n. - Amarnath Murthy, Sep 13 2002
Essentially lodumo_2 of A059841. - Philippe Deléham, Apr 26 2009
a(n) = A180176(n) for n >= 20. - Reinhard Zumkeller, Aug 15 2010

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Bits (xor)
    a004442 = xor 1 :: Integer -> Integer
    a004442_list = concat $ transpose [a005408_list, a005843_list]
    -- Reinhard Zumkeller, Jun 23 2013, Feb 01 2013, Oct 20 2011
    
  • Maple
    a[0]:=1:a[1]:=0:for n from 2 to 70 do a[n]:=a[n-2]+2 od: seq(a[n], n=0..68); # Zerinvary Lajos, Feb 19 2008
  • Mathematica
    Table[n + (-1)^n, {n, 0, 72}] (* or *)
    CoefficientList[Series[(1 - x + 2x^2)/((1 - x)(1 - x^2)), {x, 0, 72}], x] (* Robert G. Wilson v, Jun 16 2006 *)
    Flatten[Reverse/@Partition[Range[0,69],2]] (* or *) LinearRecurrence[{1,1,-1},{1,0,3},70] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    a(n)=n+(-1)^n \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    Vec((1-x+2*x^2)/((1-x)*(1-x^2)) + O(x^100)) \\ Altug Alkan, Feb 04 2016
    
  • Python
    def a(n): return n^1
    print([a(n) for n in range(69)]) # Michael S. Branicky, Jan 23 2022

Formula

a(n) = n XOR 1. - Odimar Fabeny, Sep 05 2004
G.f.: (1-x+2x^2)/((1-x)*(1-x^2)). - Mitchell Harris, Jan 10 2005
a(n+1) = lod_2(A059841(n)). - Philippe Deléham, Apr 26 2009
a(n) = 2*n - a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{k=1..n-1} (-1)^(n-1-k)*C(n+1,k). - Mircea Merca, Feb 07 2013
For n > 1, a(n)^a(n) == 1 (mod n). - Thomas Ordowski, Jan 04 2016
Sum_{n>=0,n<>1} (-1)^n/a(n) = log(2) = A002162. - Peter McNair, Aug 07 2023

Extensions

Offset adjusted by Reinhard Zumkeller, Mar 05 2010

A103889 Odd and even positive integers swapped.

Original entry on oeis.org

2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Comments

For n >= 5, also the number of (undirected) Hamiltonian cycles in the (n-2)-Moebius ladder. - Eric W. Weisstein, May 06 2019
For n >= 4, also the number of (undirected) Hamiltonian cycles in the (n-1)-prism graph. - Eric W. Weisstein, May 06 2019
The lexicographically first involution of the natural numbers with no fixed points. - Alexander Fraebel, Sep 08 2020

Crossrefs

Essentially the same as A014681.
Odd numbers: A005408. Even numbers: A005843.
Cf. A004442.

Programs

  • Haskell
    import Data.List (transpose)
    a103889 n = n - 1 + 2 * mod n 2
    a103889_list = concat $ transpose [tail a005843_list, a005408_list]
    -- Reinhard Zumkeller, Jun 23 2013, Feb 21 2011
    
  • Magma
    [n eq 1 select 2 else -Self(n-1)+2*n-1: n in [1..72]];
    
  • Mathematica
    Table[{n + 1, n}, {n, 1, 100, 2}] // Flatten
    Table[n - (-1)^n, {n, 25}] (* Eric W. Weisstein, May 06 2019 *)
  • PARI
    a(n)=n-1+if(n%2,2) \\ Charles R Greathouse IV, Feb 24 2011
    
  • Python
    def a(n): return n+1 if n&1 else n-1
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, May 03 2023

Formula

a(2k) = 2k-1 = A005408(k), a(2k-1) = 2k = A005843(k), k=1, 2, ...
O.g.f.: x*(x^2-x+2)/((x-1)^2*(1+x)). - R. J. Mathar, Apr 06 2008
a(n) = n-1+2*(n mod 2). - Rolf Pleisch, Apr 22 2008
a(n) = 2*n-a(n-1)-1 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
From Bruno Berselli, Nov 16 2010: (Start)
a(n) = n - (-1)^n.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
(a(n) - 1)*(a(n-1) + 1) = 2*A176222(n+1) for n > 1.
(a(n) - 1)*(a(n-3) + 1) = 2*A176222(n) for n > 3. (End)
E.g.f.: 1 - exp(-x) + x*exp(x). - Stefano Spezia, May 03 2023

A065190 Self-inverse permutation of the positive integers: 1 is fixed, followed by an infinite number of adjacent transpositions (n n+1).

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30, 33, 32, 35, 34, 37, 36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52, 55, 54, 57, 56, 59, 58, 61, 60, 63, 62, 65, 64, 67, 66, 69, 68, 71, 70, 73
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Also, a lexicographically minimal sequence of distinct positive integers such that a(n) is coprime to n. - Ivan Neretin, Apr 18 2015
The larger term of the pair (a(n), a(n+1)) is always odd. Had we started the sequence with a(1) = 0, it would be the lexicographically first sequence with this property if always extented with the smallest integer not yet present. - Eric Angelini, Feb 17 2017
From Yosu Yurramendi, Mar 21 2017: (Start)
This sequence is self-inverse. Except for the fixed point 1, it consists completely of 2-cycles: (2n, 2n+1), n > 0.
A020651(a(n)) = A020650(n), A020650(a(n)) = A020651(n), n > 0.
A245327(a(n)) = A245328(n), A245328(a(n)) = A245327(n), n > 0.
A063946(a(n)) = a(A063946(n)), n > 0.
A054429(a(n)) = a(A054429(n)) = A092569(n), n > 0.
A258996(a(n)) = a(A258996(n)), n > 0.
A258746(a(n)) = a(A258746(n)), n > 0. (End)
From Enrique Navarrete, Nov 13 2017: (Start)
With a(0)=0, and the rest of the sequence appended, a(n) is the smallest positive number not yet in the sequence such that the arithmetic mean of the first n+1 terms a(0), a(1), ..., a(n) is not an integer; i.e., the sequence is 0, 1, 3, 2, 5, 4, 7, 6, 9, 8, ...
Example: for n=5, (0 + 1 + 3 + 2 + 5)/5 is not an integer.
Fixed points are odd numbers >= 3 and also a(n) = n-2 for even n >= 4. (End)

Crossrefs

Programs

  • Magma
    [1] cat [n+(-1)^n: n in [2..80]]; // Vincenzo Librandi, Apr 18 2015
    
  • Maple
    [seq(f(j),j=1..120)]; f := (n) -> `if`((n < 2), n,n+((-1)^n));
  • Mathematica
    f[n_] := Rest@ Flatten@ Transpose[{Range[1, n + 1, 2], {1}~Join~Range[2, n, 2]}]; f@ 72 (* Michael De Vlieger, Apr 18 2015 *)
    Rest@ CoefficientList[Series[x (x^3 - 2 x^2 + 2 x + 1)/((x - 1)^2*(x + 1)), {x, 0, 72}], x] (* Michael De Vlieger, Feb 17 2017 *)
    Join[{1},LinearRecurrence[{1,1,-1},{3,2,5},80]] (* Harvey P. Dale, Feb 24 2021 *)
  • PARI
    { for (n=1, 1000, if (n>1, a=n + (-1)^n, a=1); write("b065190.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 13 2009
    
  • PARI
    x='x+O('x^100); Vec(x*(x^3-2*x^2+2*x+1)/((x-1)^2*(x+1))) \\ Altug Alkan, Feb 04 2016
    
  • Python
    def a(n): return 1 if n<2 else n + (-1)**n # Indranil Ghosh, Mar 22 2017
    
  • R
    maxrow <- 8 # by choice
    a <- c(1,3,2) # If it were c(1,2,3), it would be A000027
      for(m in 1:maxrow) for(k in 0:(2^m-1)){
    a[2^(m+1)+    k] = a[2^m+k] + 2^m
    a[2^(m+1)+2^m+k] = a[2^m+k] + 2^(m+1)
    }
    a
    # Yosu Yurramendi, Apr 10 2017

Formula

a(1) = 1, a(n) = n+(-1)^n.
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(x^3 - 2*x^2 + 2*x + 1) / ((x-1)^2*(x+1)). (End)
a(n)^a(n) == 1 (mod n). - Thomas Ordowski, Jan 04 2016
E.g.f.: x*(1+exp(x)) - 1 + exp(-x). - Robert Israel, Feb 04 2016
a(n) = A014681(n-1) + 1. - Michel Marcus, Dec 10 2016
a(1) = 1, for n > 0 a(2*n) = 2*a(a(n)) + 1, a(2*n + 1) = 2*a(a(n)). - Yosu Yurramendi, Dec 12 2020

A114112 a(1)=1, a(2)=2; thereafter a(n) = n+1 if n odd, n-1 if n even.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1

Views

Author

Leroy Quet, Nov 13 2005

Keywords

Comments

a(1)=1; for n>1, a(n) is the smallest positive integer not occurring earlier in the sequence such that a(n) does not divide Sum_{k=1..n-1} a(k). - Leroy Quet, Nov 13 2005 (This was the original definition. A simple induction argument shows that this is the same as the present definition. - N. J. A. Sloane, Mar 12 2018)
Define b(1)=2; for n>1, b(n) is the smallest number not yet in the sequence which shares a prime factor with the sum of all preceding terms. Then a simple induction argument shows that the b(n) sequence is the same as the present sequence with the first term omitted. - David James Sycamore, Feb 26 2018
Here are the details of the two induction arguments (Start)
For a(n), let A(n) = a(1)+...+a(n). The claim is that for n>2 a(n)=n+1 if n odd, n-1 if n even.
The induction hypotheses are: for i
For b(n), the argument is very similar, except that the missing numbers when looking for b(n) are slightly different, and (setting B(n) = b(1)+...b(n)), we have B(2i)=(i+1)(2i+1), B(2i+1)=(i+2)(2i+1). - N. J. A. Sloane, Mar 14 2018
When sequence a(n) is increasing, then the Cesàro means sequence c(n) = (a(1)+...+a(n))/n is also increasing, but the converse is false. This sequence is a such an example where c(n) is increasing, while a(n) is not increasing (Arnaudiès et al.). See proof in A354008. - Bernard Schott, May 11 2022

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.

Crossrefs

All of A014681, A103889, A113981, A114112, A114285 are essentially the same sequence. - N. J. A. Sloane, Mar 12 2018
Cf. A114113 (partial sums).
See A084265 for the partial sums of the b(n) sequence.
About Cesàro mean theorem: A033999, A141310, A237420, A354008.
Cf. A244009.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = 1, s, t = Table[ a[i], {i, n - 1}]}, s = Plus @@ t; While[ Position[t, k] != {} || Mod[s, k] == 0, k++ ]; k]; Array[a, 72] (* Robert G. Wilson v, Nov 18 2005 *)
  • PARI
    a(n) = if (n<=2, n, if (n%2, n+1, n-1)); \\ Michel Marcus, May 16 2022
    
  • Python
    def A114112(n): return n + (0 if n <= 2 else -1+2*(n%2)) # Chai Wah Wu, May 24 2022

Formula

G.f.: x*(x^4-2*x^3+x^2+x+1)/((1-x)*(1-x^2)). - N. J. A. Sloane, Mar 12 2018
The g.f. for the b(n) sequence is x*(x^3-3*x^2+2*x+2)/((1-x)*(1-x^2)). - Conjectured (correctly) by Colin Barker, Mar 04 2018
E.g.f.: 1 - x + x^2/2 + (x - 1)*cosh(x) + (x + 1)*sinh(x). - Stefano Spezia, Sep 02 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2) (A244009). - Amiram Eldar, Jun 29 2025

Extensions

More terms from Robert G. Wilson v, Nov 18 2005
Entry edited (with simpler definition) by N. J. A. Sloane, Mar 12 2018

A163542 The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163357 at the step n.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2
Offset: 1

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

a(16*n) = a(256*n) for all n.

Crossrefs

a(n) = A014681(A163543(n)). See also A163540.

Programs

  • Mathematica
    HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
       R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
       R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
       L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
       F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
       F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
    a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] :=
        Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
    Part[a[#] & /@ Range[4^4] /. {L[] -> 2, R[] -> 1, F[_] -> 0},
    2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
  • Scheme
    (define (A163542 n) (A163241 (modulo (- (A163540 (1+ n)) (A163540 n)) 4)))

Formula

a(n) = A163241((A163540(n+1)-A163540(n)) modulo 4).

A065164 Permutation t->t+1 of Z, folded to N.

Original entry on oeis.org

2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 28, 25, 30, 27, 32, 29, 34, 31, 36, 33, 38, 35, 40, 37, 42, 39, 44, 41, 46, 43, 48, 45, 50, 47, 52, 49, 54, 51, 56, 53, 58, 55, 60, 57, 62, 59, 64, 61, 66, 63, 68, 65, 70, 67, 72, 69, 74
Offset: 1

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Corresponds to simple periodic asynchronic site swap pattern ...111111... (tossing one ball from hand to hand forever).
This permutation consists of a single infinite cycle.
This is, starting at a(2) = 4, the same as the "increasing oscillating sequence" shown in Proposition 3.1, p.7 and plotted in the right of figure 1, of Vatter. The same paper, p.4, cites Comtet and uses without giving the A-number of A003319. Abstract: We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley-Wilf limit) at least lambda = approx 2.48187, the unique real root of x^5-2x^4-2x^2-2x-1, thereby establishing a conjecture of Albert and Linton. - Jonathan Vos Post, Jul 18 2008

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 819.

Crossrefs

Row 1 of A065167. Obtained by composing permutations A014681 and A065190. Inverse permutation: A065168.

Programs

  • Maple
    ss1 := [seq(PerSS(n,1), n=1..120)]; PerSS := (n,c) -> Z2N(N2Z(n)+c);
    N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
  • Mathematica
    Join[{2}, LinearRecurrence[{1, 1, -1}, {4, 1, 6}, 100]] (* Amiram Eldar, Aug 08 2023 *)

Formula

Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+1).
a(n) = n + 2*(-1^n) for n > 1. - Frank Ellermann, Feb 12 2002
a(n) = 2*n-a(n-1)-1, n>2. - Vincenzo Librandi, Dec 07 2010, corrected by R. J. Mathar, Dec 07 2010
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(3*x^3-5*x^2+2*x+2) / ((x-1)^2*(x+1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 1. - Amiram Eldar, Aug 08 2023

A163536 The relative direction (0=straight ahead, 1=turn right, 2=turn left) of the Peano curve A163334 at point n.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 2
Offset: 1

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

a(9*n) = a(81*n) for all n.

Crossrefs

Cf. A163534 (direction), A163537 (transposed relative).

Programs

Formula

a(n) = A163241((A163534(n+1)-A163534(n)) modulo 4).
a(n) = A014681(A163537(n)).

Extensions

Name corrected by Kevin Ryde, Aug 29 2020

A195035 Multiples of 15 and of 8 interleaved: a(2n-1) = 15n, a(2n) = 8n.

Original entry on oeis.org

15, 8, 30, 16, 45, 24, 60, 32, 75, 40, 90, 48, 105, 56, 120, 64, 135, 72, 150, 80, 165, 88, 180, 96, 195, 104, 210, 112, 225, 120, 240, 128, 255, 136, 270, 144, 285, 152, 300, 160, 315, 168, 330, 176, 345, 184, 360, 192, 375, 200, 390, 208, 405, 216
Offset: 1

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195036.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [15, 8, 17]. Zero together with partial sums give A195036; the vertices of the spiral.

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(15+8*x)/((1-x)^2*(1+x)^2).
a(n) = A010686(n)*A010706(n-1)*A004526(n+1) = (23*n-(7*n+15)*(-1)^n+15)/4.
a(n) = 2*a(n-2) - a(n-4).
a(-n) = -a(A014681(n-1)). (End)
Showing 1-10 of 28 results. Next