cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A263951 Square numbers in A070552.

Original entry on oeis.org

9, 25, 121, 361, 841, 3481, 3721, 5041, 6241, 10201, 17161, 19321, 32761, 39601, 73441, 121801, 143641, 167281, 201601, 212521, 271441, 323761, 326041, 398161, 410881, 436921, 546121, 564001, 674041, 776161, 863041, 982081, 1062961, 1079521, 1104601, 1142761, 1190281, 1274641, 1324801
Offset: 1

Views

Author

Zak Seidov, Oct 30 2015

Keywords

Comments

All terms are == 1 (mod 8). For n > 2, a(n) == 1 (mod 120).
This sequence is a subsequence of A247687 and it contains the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice), are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). The sequence of those primes p is A048161. Cf. A237593. - Hartmut F. W. Hoft, Aug 06 2020

Crossrefs

Programs

  • Mathematica
    a263951[n_] := Select[Map[Prime[#]^2&, Range[n]], PrimeQ[(#+1)/2]&]
    a263951[190] (* Hartmut F. W. Hoft, Aug 06 2020 *)
  • PARI
    forprime(p=3, 2000, if(isprime((p^2+1)/2), print1(p^2, ", "))) \\ Altug Alkan, Oct 30 2015

Formula

a(n) = A048161(n)^2.
From Hartmut F. W. Hoft, Aug 06 2020: (Start)
a(n) = 2 * A067755(n) + 1, n >= 1.
a(n+2) = 120 * A068485(n) + 1, n >= 1. (End)

A048161 Primes p such that q = (p^2 + 1)/2 is also a prime.

Original entry on oeis.org

3, 5, 11, 19, 29, 59, 61, 71, 79, 101, 131, 139, 181, 199, 271, 349, 379, 409, 449, 461, 521, 569, 571, 631, 641, 661, 739, 751, 821, 881, 929, 991, 1031, 1039, 1051, 1069, 1091, 1129, 1151, 1171, 1181, 1361, 1439, 1459, 1489, 1499, 1531, 1709, 1741, 1811, 1831, 1901
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com)

Keywords

Comments

Primes which are a leg of an integral right triangle whose hypotenuse is also prime.
It is conjectured that there are an infinite number of such triangles.
The Pythagorean triple {p, (p^2 - 1)/2, (p^2 + 1)/2} corresponds to {a(n), A067755(n), A067756(n)}. - Lekraj Beedassy, Oct 27 2003
There is no Pythagorean triangle all of whose sides are prime numbers. Still there are Pythagorean triangles of which the hypotenuse and one side are prime numbers, for example, the triangles (3,4,5), (11,60,61), (19,180,181), (61,1860,1861), (71,2520,2521), (79,3120,3121). [Sierpiński]
We can always write p=(Y+1)^2-Y^2, with Y=(p-1)/2, therefore q=(Y+1)^2+Y^2. - Vincenzo Librandi, Nov 19 2010
p^2 and p^2+1 are semiprimes; p^2 are squares in A070552 Numbers n such that n and n+1 are products of two primes. - Zak Seidov, Mar 21 2011

Examples

			For p=11, (p^2+1)/2=61; p=61, (p^2+1)/2=1861.
For p(1)=3, the right triangle 3, 4, 5 is the smallest where 5=(3*3+1)/2.
For p(10)=101, the right triangle is 101, 5100, 5101 where 5101=(101*101+1)/2.
		

References

  • Wacław Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 6. MR2002669

Crossrefs

Cf. A067755, A067756. Complement in primes of A094516.
Cf. A048270, A048295, A308635, A308636. Primes contained in A002731.

Programs

  • Haskell
    a048161 n = a048161_list !! (n-1)
    a048161_list = [p | p <- a065091_list, a010051 ((p^2 + 1) `div` 2) == 1]
    -- Reinhard Zumkeller, Aug 26 2012
    
  • Magma
    [p: p in PrimesInInterval(3, 2000) | IsPrime((p^2+1) div 2)]; // Vincenzo Librandi, Dec 31 2013
    
  • Maple
    a := proc (n) if isprime(n) = true and type((1/2)*n^2+1/2, integer) = true and isprime((1/2)*n^2+1/2) = true then n else end if end proc: seq(a(n), n = 1 .. 2000) # Emeric Deutsch, Jan 18 2009
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[(#^2 + 1)/2] &] (* Stefan Steinerberger, Apr 07 2006 *)
    a[ n_] := Module[{p}, If[ n < 1, 0, p = a[n - 1]; While[ (p = NextPrime[p]) > 0, If[ PrimeQ[(p*p + 1)/2], Break[]]]; p]]; (* Michael Somos, Nov 24 2018 *)
  • PARI
    {a(n) = my(p); if( n<1, 0, p = a(n-1) + (n==1); while(p = nextprime(p+2), if( isprime((p*p+1)/2), break)); p)}; /* Michael Somos, Mar 03 2004 */
    
  • Python
    from sympy import isprime, nextprime; p = 2
    while p < 1901: p = nextprime(p); print(p, end = ', ') if isprime((p*p+1)//2) else None # Ya-Ping Lu, Apr 24 2025

Formula

A000035(a(n))*A010051(a(n))*A010051((a(n)^2+1)/2) = 1. - Reinhard Zumkeller, Aug 26 2012

Extensions

More terms from David W. Wilson

A056809 Numbers k such that k, k+1 and k+2 are products of two primes.

Original entry on oeis.org

33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 04 2002

Keywords

Comments

Each term is the beginning of a run of three 2-almost primes (semiprimes). No runs exist of length greater than three. For the same reason, each term must be odd: If k were even, then so would be k+2. In fact, one of k or k+2 would be divisible by 4, so must indeed be 4 to have only two prime factors. However, neither 2,3,4 nor 4,5,6 is such a run. - Rick L. Shepherd, May 27 2002
k+1, which is twice a prime, is in A086005. The primes are in A086006. - T. D. Noe, May 31 2006
The squarefree terms are listed in A039833. - Jianing Song, Nov 30 2021

Examples

			121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes.
		

Crossrefs

Intersection of A070552 and A092207.

Programs

  • Mathematica
    f[n_] := Plus @@ Transpose[ FactorInteger[n]] [[2]]; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ]
    Flatten[Position[Partition[PrimeOmega[Range[5000]],3,1],{2,2,2}]] (* Harvey P. Dale, Feb 15 2015 *)
    SequencePosition[PrimeOmega[Range[5000]],{2,2,2}][[;;,1]] (* Harvey P. Dale, Mar 03 2024 *)
  • PARI
    forstep(n=1,5000,2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n,",")))
    
  • PARI
    is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,(lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015

Formula

a(n) = A086005(n) - 1 = 2*A086006(n) - 1 = 4*A123255(n) + 1. - Jianing Song, Nov 30 2021

Extensions

Edited and extended by Robert G. Wilson v, May 04 2002

A039833 Smallest of three consecutive squarefree numbers k, k+1, k+2 of the form p*q where p and q are distinct primes.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285, 4413, 4533, 4593, 4881, 5601
Offset: 1

Views

Author

Keywords

Comments

Equivalently: k, k+1 and k+2 all have 4 divisors.
There cannot be four consecutive squarefree numbers as one of them is divisible by 2^2 = 4.
These 3 consecutive squarefree numbers of the form p*q have altogether 6 prime factors always including 2 and 3. E.g., if k = 99985, the six prime factors are {2,3,5,19997,33329,49993}. The middle term is even and not divisible by 3.
Nonsquare terms of A056809. First terms of A056809 absent here are A056809(4)=121=11^2, A056809(14)=841=29^2, A056809(55)=6241=79^2.
Cf. A179502 (Numbers k with the property that k^2, k^2+1 and k^2+2 are all semiprimes). - Zak Seidov, Oct 27 2015
The numbers k, k+1, k+2 have the form 2p-1, 2p, 2p+1 where p is an odd prime. A195685 gives the sequence of odd primes that generates these maximal runs of three consecutive integers with four positive divisors. - Timothy L. Tiffin, Jul 05 2016
a(n) is always 1 or 9 mod 12. - Charles R Greathouse IV, Mar 19 2022

Examples

			33, 34 and 35 all have 4 divisors.
85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B18.
  • David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 114.

Crossrefs

Programs

  • Haskell
    a039833 n = a039833_list !! (n-1)
    a039833_list = f a006881_list where
       f (u : vs@(v : w : xs))
         | v == u+1 && w == v+1 = u : f vs
         | otherwise            = f vs
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Mathematica
    lst = {}; Do[z = n^3 + 3*n^2 + 2*n; If[PrimeOmega[z/n] == PrimeOmega[z/(n + 2)] == 4 && PrimeNu[z] == 6, AppendTo[lst, n]], {n, 1, 5601, 2}]; lst (* Arkadiusz Wesolowski, Dec 11 2011 *)
    okQ[n_]:=Module[{cl={n,n+1,n+2}},And@@SquareFreeQ/@cl && Union[ DivisorSigma[ 0,cl]]=={4}]; Select[Range[1,6001,2],okQ] (* Harvey P. Dale, Dec 17 2011 *)
    SequencePosition[DivisorSigma[0,Range[6000]],{4,4,4}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    is(n)=n%4==1 && factor(n)[,2]==[1,1]~ && factor(n+1)[,2]==[1,1]~ && factor(n+2)[,2]==[1,1]~ \\ Charles R Greathouse IV, Aug 29 2016
    
  • PARI
    is(n)=my(t=n%12); if(t==1, isprime((n+2)/3) && isprime((n+1)/2) && factor(n)[,2]==[1,1]~, t==9 && isprime(n/3) && isprime((n+1)/2) && factor(n+2)[,2]==[1,1]~) \\ Charles R Greathouse IV, Mar 19 2022

Formula

A008966(a(n)) * A064911(a(n)) * A008966(a(n)+1) * A064911(a(n)+1) * A008966(a(n)+2) * A064911(a(n)+2) = 1. - Reinhard Zumkeller, Feb 26 2011

Extensions

Additional comments from Amarnath Murthy, Vladeta Jovovic, Labos Elemer and Benoit Cloitre, May 08 2002

A082919 Numbers k such that k, k+2, k+4, k+6, k+8, k+10, k+12 and k+14 are semiprimes.

Original entry on oeis.org

8129, 9983, 99443, 132077, 190937, 237449, 401429, 441677, 452639, 604487, 802199, 858179, 991289, 1471727, 1474607, 1963829, 1999937, 2376893, 2714987, 3111977, 3302039, 3869237, 4622087, 4738907, 6156137, 7813559, 8090759
Offset: 1

Views

Author

Hugo Pfoertner, Apr 22 2003

Keywords

Comments

Start of a cluster of 8 consecutive odd semiprimes. Semiprimes in arithmetic progression. All terms are odd, see also A056809.
Note that there cannot exist 9 consecutive odd semiprimes. Out of any 9 consecutive odd numbers, one of them will be divisible by 9. The only multiple of 9 which is a semiprime is 9 itself and it is easy to see that's not part of a solution. - Jack Brennen, Jan 04 2006
For the first 500 terms, a(n) is roughly 40000*n^1.6, so the sequence appears to be infinite. Note that (a(n)+4)/3 and (a(n)+10)/3 are twin primes. - Don Reble, Jan 05 2006
All terms == 11 (mod 18). - Zak Seidov, Sep 27 2012
There is at least one even semiprime between k and k+14 for 1812 of the first 10000 terms. - Donovan Johnson, Oct 01 2012
All terms == {29,47,83} (mod 90). - Zak Seidov, Sep 13 2014
Among the first 10000 terms, from all 80000 numbers a(n)+m, m=0,2,4,6,8,10,12,14, the only square is a(4637) + 2 = 23538003241 = 153421^2 (153421 is prime, of course). - Zak Seidov, Dec 22 2014

Examples

			a(1)=8129 because 8129=11*739, 8131=47*173, 8133=3*2711, 8135=5*1627, 8137=79*103, 8139=3*2713, 8141=7*1163, 8143=17*479 are semiprimes.
		

References

  • Author of this sequence is Jack Brennen, who provided the terms up to 991289 in a posting to the seqfan mailing list on April 5, 2003.

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[3*10^6], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == PrimeFactorExponentsAdded[ # + 14] == 2 &] (* Robert G. Wilson v and Zak Seidov, Feb 24 2004 *)

A247687 Numbers m with the property that the symmetric representation of sigma(m) has three parts of width one.

Original entry on oeis.org

9, 25, 49, 50, 98, 121, 169, 242, 289, 338, 361, 484, 529, 578, 676, 722, 841, 961, 1058, 1156, 1369, 1444, 1681, 1682, 1849, 1922, 2116, 2209, 2312, 2738, 2809, 2888, 3362, 3364, 3481, 3698, 3721, 3844, 4232, 4418, 4489, 5041, 5329, 5476, 5618, 6241, 6724, 6728, 6889, 6962, 7396, 7442, 7688, 7921, 8836, 8978, 9409
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2014

Keywords

Comments

The symmetric representation of sigma(m) has 3 regions of width 1 where the two extremal regions each have 2^k - 1 legs and the central region starts with the p-th leg of the associated Dyck path for sigma(m) precisely when m = 2^(k - 1) * p^2 where 2^k < p <= row(m), k >= 1, p >= 3 is prime and row(m) = floor((sqrt(8*m + 1) - 1)/2). Furthermore, the areas of the two outer regions are (2^k - 1)*(p^2 + 1)/2 each so that the area of the central region is (2^k - 1)*p; for a proof see the link.
Since the sequence is defined by a two-parameter expression it can be written naturally as a triangle as shown in the Example section.
A263951 is a subsequence of this sequence containing the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice) are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). - Hartmut F. W. Hoft, Aug 06 2020

Examples

			We show portions of the first eight columns, powers of two 0 <= k <= 7, and 55 rows of the triangle through prime(56) = 263.
p/k     0       1       2       3       4       5       6       7
3       9
5       25      50
7       49      98
11      121     242     484
13      169     338     676
17      289     578     1156    2312
19      361     722     1444    2888
23      529     1058    2116    4232
29      841     1682    3364    6728
31      961     1922    3844    7688
37      1369    2738    5476    10952   21904
41      1681    3362    6724    13448   26896
43      1849    3698    7396    14792   29584
47      2209    4418    8836    17672   35344
53      2809    5618    11236   22472   44944
59      3481    6962    13924   27848   55696
61      3721    7442    14884   29768   59536
67      4489    8978    17956   35912   71824   143648
71      5041    10082   20164   40328   80656   161312
.       .       .       .       .       .       .
.       .       .       .       .       .       .
131     17161   34322   68644   137288  274567  549152  1098304
137     18769   37538   75076   150152  300304  600608  1201216
.       .       .       .       .       .       .       .
.       .       .       .       .       .       .       .
257     66049   132098  264196  528392  1056784 2113568 4227136 8454272
263     69169   138338  276676  553352  1106704 2213408 4426816 8853632
Number 4 is not in this sequence since the symmetric representation of sigma(4) consists of a single region. Column k=0 contains the squares of primes (A001248(n), n>=2), column k=1 contains double the squares of primes (A079704(n), n>=2) and column k=2 contains four times the squares of primes (A069262(n), n>=5).
		

Crossrefs

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    (* data *)
    Select[Range[10000], atmostOneDiagonalsQ[#] && Length[a237270[#]]==3 &]
    (* expression for the triangle in the Example section *)
    TableForm[Table[2^k Prime[n]^2, {n, 2, 57}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth -> 2, TableHeadings -> {Map[Prime, Range[2, 57]], Range[0, Floor[Log[2, Prime[57] - 1]]]}]

Formula

As an irregular triangle, T(n, k) = 2^k * prime(n)^2 where n >= 2 and 0 <= k <= floor(log_2(prime(n)) - 1).

A092207 Semiprimes k such that k+2 is also a semiprime.

Original entry on oeis.org

4, 33, 49, 55, 85, 91, 93, 119, 121, 141, 143, 159, 183, 185, 201, 203, 213, 215, 217, 219, 235, 247, 265, 287, 289, 299, 301, 303, 319, 321, 327, 339, 391, 393, 411, 413, 415, 445, 451, 469, 471, 515, 517, 527, 533, 535, 543, 551, 579, 581, 589, 633, 667
Offset: 1

Views

Author

Robert G. Wilson v and Zak Seidov, Feb 24 2004

Keywords

Comments

Starting with 33 all terms are odd. First squares are 4, 49, 169, 361, 529, 961, 1369, 2209, 2809, 4489, ... - Zak Seidov, Feb 17 2017

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 668], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == 2 &]
    Select[Range[700],PrimeOmega[#]==PrimeOmega[#+2]==2&] (* Harvey P. Dale, Aug 20 2011 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,1}] [[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, May 29 2017 *)
  • PARI
    is(n)=if(n%2==0, return(n==4)); bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Feb 21 2017
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator of terms
        yield 4
        nxt = 0
        for k in count(5, 2):
            prv, nxt = nxt, sum(factorint(k+2).values())
            if prv == nxt == 2: yield k
    print(list(islice(agen(), 53))) # Michael S. Branicky, Nov 26 2022

A092125 Numbers n such that n, n+2, n+4 are semiprimes.

Original entry on oeis.org

91, 119, 141, 183, 201, 213, 215, 217, 287, 299, 301, 319, 391, 411, 413, 469, 515, 533, 579, 667, 685, 695, 789, 813, 1055, 1077, 1133, 1135, 1137, 1145, 1165, 1203, 1253, 1313, 1343, 1345, 1347, 1383, 1385, 1387, 1389, 1401, 1561, 1639, 1685, 1687, 1761
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n| &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [2..4300]|IsSemiprime(n) and IsSemiprime(n+2) and IsSemiprime(n+4)] // Vincenzo Librandi, Dec 16 2010
  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 1792], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,2000}],{1,,1,,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 17 2020 *)

A092129 Numbers n such that n, n+2, n+4, n+6, n+8, n+10, n+12 are semiprimes.

Original entry on oeis.org

3091, 8129, 8131, 9983, 9985, 55559, 92603, 99443, 99445, 112709, 132077, 132079, 182749, 190937, 190939, 209479, 237449, 237451, 239089, 249689, 296779, 300449, 313411, 401429, 401431, 441677, 441679, 452639, 452641, 547157, 604487, 604489
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[ 631200], PrimeFactorExponentsAdded[ # ] == PrimeFactorExponentsAdded[ # + 2] == PrimeFactorExponentsAdded[ # + 4] == PrimeFactorExponentsAdded[ # + 6] == PrimeFactorExponentsAdded[ # + 8] == PrimeFactorExponentsAdded[ # + 10] == PrimeFactorExponentsAdded[ # + 12] == 2 &] (* Robert G. Wilson v, Feb 24 2004 *)
    Select[Range[610000],Union[PrimeOmega[#+Range[0,12,2]]]=={2}&] (* Harvey P. Dale, Oct 14 2018 *)

Extensions

More terms from Don Reble, Feb 23 2004
More terms from Robert G. Wilson v, Feb 24 2004

A092126 Numbers n such that n, n+2, n+4, n+6 are semiprimes.

Original entry on oeis.org

213, 215, 299, 411, 1133, 1135, 1343, 1345, 1383, 1385, 1387, 1685, 1793, 1835, 1837, 1891, 1937, 1939, 1957, 2045, 2315, 2317, 2513, 2567, 2807, 2809, 2929, 3091, 3093, 3095, 3097, 3147, 3149, 3647, 3957, 3977, 3979, 4115, 4313, 4315, 4411, 4529, 4531
Offset: 1

Views

Author

Zak Seidov, Feb 22 2004

Keywords

Comments

Semiprimes in arithmetic progression. All terms are odd, see also A056809.

Crossrefs

Programs

Showing 1-10 of 32 results. Next