cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A176918 Triangle read by rows, a signed variant of A077049 * A128407; as infinite lower triangular matrices.

Original entry on oeis.org

1, -1, 0, -1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, -1, 0, 0
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Apr 29 2010

Keywords

Comments

Row sums = mu(n), A008683

Examples

			First few rows of triangle A176918 =
1;
-1, 0;
-1, 0, 0;
-1, 1, 0, 0;
-1, 0, 0, 0, 0;
-1, 1, 1, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0;
-1, 1, 0, 0, 0, 0, 0, 0;
-1, 0, 1, 0, 0, 0, 0, 0, 0;
-1, 1, 0, 0, 1, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
-1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

Cf. A077049, A128407, A008683, A176890 (another version).

Formula

Given (-1)*triangle A077049, preface this with a "1" as row 1; = M.
Perform M * A128407 (the diagonalized variant of A008683); = A176918 as an
infinite lower triangular matrix.

A176917 Triangle read by rows, A077049 * the diagonalized version of A002033.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Apr 28 2010

Keywords

Comments

Row sums = A002033 starting with offset 1: (1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8,...)

Examples

			First few rows of the triangle =
1;
1, 0;
1, 1, 0;
1, 0, 0, 0;
1, 1, 1, 0, 0;
1, 0, 0, 0, 0, 0;
1, 1, 0, 2, 0, 0, 0;
1, 0, 1, 0, 0, 0, 0, 0;
1, 1, 0, 0, 1, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0;
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 2, 0, 3, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

Formula

As infinite lower triangular matrices, A077049 * the diagonalized version of
A002033: (1, 1, 1, 2, 1, 3, 1, 4, 2,...) as the right border with the rest zeros.

A051731 Triangle read by rows: T(n, k) = 1 if k divides n, T(n, k) = 0 otherwise, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

T(n, k) is the number of partitions of n into k equal parts. - Omar E. Pol, Apr 21 2018
This triangle is the lower triangular array L in the LU decomposition of the square array A003989. - Peter Bala, Oct 15 2023

Examples

			The triangle T(n, k) begins:
  n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  1:  1
  2:  1  1
  3:  1  0  1
  4:  1  1  0  1
  5:  1  0  0  0  1
  6:  1  1  1  0  0  1
  7:  1  0  0  0  0  0  1
  8:  1  1  0  1  0  0  0  1
  9:  1  0  1  0  0  0  0  0  1
  10: 1  1  0  0  1  0  0  0  0  1
  11: 1  0  0  0  0  0  0  0  0  0  1
  12: 1  1  1  1  0  1  0  0  0  0  0  1
  13: 1  0  0  0  0  0  0  0  0  0  0  0  1
  14: 1  1  0  0  0  0  1  0  0  0  0  0  0  1
  15: 1  0  1  0  1  0  0  0  0  0  0  0  0  0  1
  ... Reformatted and extended. - _Wolfdieter Lang_, Nov 12 2014
		

Crossrefs

Cf. A000005 (row sums), A032741(n+2) (diagonal sums).
Cf. A243987 (partial sums per row).
Cf. A134546 (A004736 * T, matrix multiplication).
Variants: A113704, A077049, A077051.

Programs

  • Haskell
    a051731 n k = 0 ^ mod n k
    a051731_row n = a051731_tabl !! (n-1)
    a051731_tabl = map (map a000007) a048158_tabl
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Magma
    [0^(n mod k): k in [1..n], n in [1..17]]; // G. C. Greubel, Jun 22 2024
    
  • Maple
    A051731 := proc(n, k) if n mod k = 0 then 1 else 0 end if end proc:
    # R. J. Mathar, Jul 14 2012
  • Mathematica
    Flatten[Table[If[Mod[n, k] == 0, 1, 0], {n, 20}, {k, n}]]
  • PARI
    for(n=1,17,for(k=1,n,print1(!(n%k)", "))) \\ Charles R Greathouse IV, Mar 14 2012
    
  • Python
    from math import isqrt, comb
    def A051731(n): return int(not (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(n-comb(a,2))) # Chai Wah Wu, Nov 13 2024
  • Sage
    A051731_row = lambda n: [int(k.divides(n)) for k in (1..n)]
    for n in (1..17): print(A051731_row(n)) # Peter Luschny, Jan 05 2018
    

Formula

{T(n, k)*k, k=1..n} setminus {0} = divisors(n).
Sum_{k=1..n} T(n, k)*k^i = sigma[i](n), where sigma[i](n) is the sum of the i-th power of the positive divisors of n.
Sum_{k=1..n} T(n, k) = A000005(n).
Sum_{k=1..n} T(n, k)*k = A000203(n).
T(n, k) = T(n-k, k) for k <= n/2, T(n, k) = 0 for n/2 < k <= n-1, T(n, n) = 1.
Rows given by A074854 converted to binary. Example: A074854(4) = 13 = 1101_2; row 4 = 1, 1, 0, 1. - Philippe Deléham, Oct 04 2003
From Paul Barry, Dec 05 2004: (Start)
Binomial transform (product by binomial matrix) is A101508.
Columns have g.f.: x^k/(1-x^(k+1)) (k >= 0). (End)
Matrix inverse of triangle A054525, where A054525(n, k) = MoebiusMu(n/k) if k|n, 0 otherwise. - Paul D. Hanna, Jan 09 2006
From Gary W. Adamson, Apr 15 2007, May 10 2007: (Start)
Equals A129372 * A115361 as infinite lower triangular matrices.
A054525 is the inverse of this triangle (as lower triangular matrix).
This triangle * [1, 2, 3, ...] = sigma(n) (A000203).
This triangle * [1/1, 1/2, 1/3, ...] = sigma(n)/n. (End)
From Reinhard Zumkeller, Nov 01 2009: (Start)
T(n, k) = 0^(n mod k).
T(n, k) = A000007(A048158(n, k)). (End)
From Mats Granvik, Jan 26 2010, Feb 10 2010, Feb 16 2010: (Start)
T(n, k) = A172119(n) mod 2.
T(n, k) = A175105(n) mod 2.
T(n, k) = Sum_{i=1..k-1} (T(n-i, k-1) - T(n-i, k)) for k > 1 and T(n, 1) = 1.
(Jeffrey O. Shallit kindly provided a clarification along with a proof of this formula.) (End)
A049820(n) = number of zeros in n-th row. - Reinhard Zumkeller, Mar 09 2010
The determinant of this matrix where T(n, n) has been swapped with T(1,k) is equal to the n-th term of the Mobius function. - Mats Granvik, Jul 21 2012
T(n, k) = Sum_{y=1..n} Sum_{x=1..n} [GCD((x/y)*(k/n), n) = k]. - Mats Granvik, Dec 17 2023

Extensions

Edited by Peter Luschny, Oct 18 2023

A143104 Infinite Redheffer matrix read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Note that Redheffer's matrix (1977) is actually given by A077049: the first row starts with a single 1. We follow the nomenclature of Wilf, Dana, Vaughan and Weisstein, which uses the transpose and sets the first column to all-1. - R. J. Mathar, Jul 22 2017
The determinant of the n X n Redheffer matrix is given by Mertens's function A002321(n) [Barrett].
For n > 1, replacing a(n,n) with 0 in the Redheffer matrix and taking the determinant gives Moebius(n) = A008683(n). The number of permutations with nonzero contribution to this determinant is given by A002033. For first few n, these permutations are shown in the sequences A144193 to A144201. - Mats Granvik, Sep 14 2008
The determinant that is the Moebius function was discovered by reading the blog post "The Mobius function is strongly orthogonal to nilsequences" by Terence Tao. - Mats Granvik, Jan 24 2009

Examples

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
		

References

  • R. C. Vaughan, On the eigenvalues of Redheffer's matrix I, in: Number Theory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283-296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993.

Crossrefs

Cf. A002033, A144193 .. A144201, A143142. - Mats Granvik, Sep 14 2008

Programs

  • Excel
    =if(mod(column();row())=0;1;if(column()=1;1;0)). Produces the Redheffer matrix.
    
  • Maple
    A143104 := proc(i,j)
        if modp(j,i) =0 or j = 1 then
            1;
        else
            0;
        end if;
    end proc:
    for d from 2 to 10 do
        for m from d-1 to 1 by -1 do
            n := d-m ;
            printf("%d ",A143104(n,m)) ;
        end do:
    end do: # R. J. Mathar, Jul 23 2017
  • Mathematica
    Redheffer[i_, j_] := Boole[Divisible[i, j] || (i == 1)];
    T[n_] := n*(n + 1)/2;
    S[n_] := Floor[1/2 + Sqrt[2 n]];
    j[n_] := 1 + T[S[n]] - n;
    i[n_] := 1 + S[n] - j[n];
    A143104[n_] := Redheffer[i[n], j[n]]; (* Enrique Pérez Herrero, Apr 13 2010 *)
    a[i_, j_] := If[j == 1 || Divisible[j, i], 1, 0];
    Table[a[i-j+1, j], {i, 1, 14}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
  • PARI
    { a(i,j) = (j==1) || (j%i==0); }

Formula

a(i,j) = 1 if j=1 or i|j; 0 otherwise.
a(A000217(n)) = a(A000217(n)+1) = 1. - Enrique Pérez Herrero, Apr 16 2010

Extensions

Edited and extended by Max Alekseyev, Oct 28 2008

A054535 Square array giving Ramanujan sum T(n,k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n), read by antidiagonals upwards (n >= 1, k >= 1).

Original entry on oeis.org

1, -1, 1, -1, 1, 1, 0, -1, -1, 1, -1, -2, 2, 1, 1, 1, -1, 0, -1, -1, 1, -1, -1, -1, 2, -1, 1, 1, 0, -1, -2, -1, 0, 2, -1, 1, 0, 0, -1, -1, 4, -2, -1, 1, 1, 1, 0, 0, -1, 1, -1, 0, -1, -1, 1, -1, -1, -3, -4, -1, 2, -1, 2, 2, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 0, -1, -1, 1, -1, 2, -1, -1, 0, 0, 6, -1, -1, -2, -1, 1, 1, 1, -1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

Replace the first column in A077049 with any k-th column in A177121 to get a new array. Then the matrix inverse of the new array will have the k-th column of A054535 (this array) as its first column. - Mats Granvik, May 03 2010
We have T(n, k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n) and
A054534(n, k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k). That is, the current array is the transpose of array A054534. Dirichlet g.f.'s for these two arrays are given below by R. J. Mathar and Mats Granvik. - Petros Hadjicostas, Jul 27 2019

Examples

			Square array T(n,k) = c_n(k) (with rows n >= 1 and columns k >= 1) starts as follows:
   1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1, ...
  -1, -1,  2, -1, -1,  2, -1, -1,  2, -1, -1,  2, -1, ...
   0, -2,  0,  2,  0, -2,  0,  2,  0, -2,  0,  2,  0, ...
  -1, -1, -1, -1,  4, -1, -1, -1, -1,  4, -1, -1, -1, ...
   1, -1, -2, -1,  1,  2,  1, -1, -2, -1,  1,  2,  1, ...
  -1, -1, -1, -1, -1, -1,  6, -1, -1, -1, -1, -1, -1, ...
   0,  0,  0, -4,  0,  0,  0,  4,  0,  0,  0, -4,  0, ...
   ... [example edited by _Petros Hadjicostas_, Jul 27 2019]
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Oxford Science Publications, Clarendon Press, Oxford, 2003.
  • E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, 2nd ed., 1986.

Crossrefs

Transpose of array in A054534. Cf. A054532, A054533, A282634.
Cf. A086831=c_n(2) (2nd column), A085097=c_n(3) (3rd column), A085384=c_n(4) (4th column), A085639=c_n(5) (fifth column), A085906=c_n(6) (sixth column), A099837=c_3(n) (third row), A176742=c_4(n) (fourth row), A100051=c_6(n) (sixth row).

Programs

  • Maple
    with(numtheory): c:=(n,k)->phi(n)*mobius(n/gcd(n,k))/phi(n/gcd(n,k)): for n from 1 to 13 do seq(c(n+1-j,j),j=1..n) od; # gives the sequence in triangular form # Emeric Deutsch
    # to get the example above
    for n to 8 do
        seq(c(n, k), k = 1 .. 13);
    end do
    # Petros Hadjicostas, Jul 27 2019
  • Mathematica
    nmax = 14; t[n_, k_] := EulerPhi[n]*(MoebiusMu[n / GCD[n, k]] / EulerPhi[n / GCD[n, k]]); Flatten[ Table[t[n - k + 1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 10 2011, after Emeric Deutsch *)
    (* To get the example above in table format *)
    TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 13}]]
    (* Petros Hadjicostas, Jul 27 2019 *)

Formula

T(n,k) = c_n(k) = phi(n) * Moebius(n/gcd(n, k))/phi(n/gcd(n, k)). - Emeric Deutsch, Dec 23 2004 [The r.h.s. of this formula is known as the von Sterneck function, and it was introduced by him around 1900. - Petros Hadjicostas, Jul 20 2019]
Dirichlet series: Sum_{n>=1} c_n(k)/n^s = sigma_{1-s}(k)/zeta(s) where sigma is the sum-of-divisors function. Sum_{n>=1} c_k(n)/n^s = zeta(s)*Sum_{d|k} mu(k/d)*d^(1-s). [Hardy & Wright, Titchmarsh] - R. J. Mathar, Apr 01 2012 [We have sigma_{1-s}(k) = Sum_{d|k} d^{1-s} = Sum_{d|k} (k/d)^{1-s} = sigma_{s-1}(k) / k^{s-1}. - Petros Hadjicostas, Jul 27 2019]
From Mats Granvik, Oct 10 2016: (Start)
For n >= 1 and k >= 1 let
A(n,k) := if n mod k = 0 then k^r, otherwise 0;
B(n,k) := if n mod k = 0 then k/n^s, otherwise 0.
Then the Ramanujan's sum matrix equals
inverse(A).transpose(B) evaluated at s=0 and r=0.
Equals inverse(A051731).transpose(A127093).
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} T(n,k)/(n^r*k^s) = zeta(s)*zeta(s + r - 1)/zeta(r) as in Wikipedia. (End)
T(n,k) = c_n(k) = Sum_{s | gcd(n,k)} s * Moebius(n/s). - Petros Hadjicostas, Jul 27 2019
Lambert series and a consequence: Sum_{n >= 1} c_n(k) * z^n / (1 - z^n) = Sum_{s|k} s * z^s and -Sum_{n >= 1} (c_n(k) / n) * log(1 - z^n) = Sum_{s|k} z^s for |z| < 1 (using the principal value of the logarithm). - Petros Hadjicostas, Aug 15 2019

Extensions

Name edited by Petros Hadjicostas, Jul 27 2019

A003988 Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is [ i/j ].

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 1, 0, 0, 5, 2, 1, 0, 0, 6, 2, 1, 0, 0, 0, 7, 3, 1, 1, 0, 0, 0, 8, 3, 2, 1, 0, 0, 0, 0, 9, 4, 2, 1, 1, 0, 0, 0, 0, 10, 4, 2, 1, 1, 0, 0, 0, 0, 0, 11, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 12, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 13, 6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 14, 6, 4, 2, 2, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Another version of A010766.

Crossrefs

Row sums are in A006218. Antidiagonal sums are in A002541.

Programs

  • Haskell
    a003988 n k = (n + 1 - k) `div` k
    a003988_row n = zipWith div [n,n-1..1] [1..n]
    a003988_tabl = map a003988_row [1..]
    -- Reinhard Zumkeller, Apr 13 2012
  • Mathematica
    t[n_, k_] := Quotient[n, k]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 21 2013 *)

Formula

From Franklin T. Adams-Watters, Jan 28 2006: (Start)
T(n,k) = Sum_{i=1..k} A077049(n,i).
G.f.: (1/(1-x))*Sum_{k>0} x^k*y^k/(1-x^k) = (1/(1-x))*Sum_{k>0} x^k * y / (1 - x^k y) = (1/(1-x)) * Sum_{k>0} x^k * Sum_{d|k} y^d = A(x,y)/(1-x) where A(x,y) is the g.f. of A077049. (End)
T(n,k) = floor((n + 1 - k) / k). - Reinhard Zumkeller, Apr 13 2012

Extensions

More terms from James Sellers

A077051 Right summatory matrix, T, by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 22 2002

Keywords

Comments

If S=(s(1),s(2),...) is a sequence written as a row vector, then S*T is the summatory sequence of S; i.e. its n-th term is Sum{s(k): k|n}. T is the transpose of the left summatory matrix, A077049; T is the inverse of the right Moebius transformation matrix. See A077049 for further properties.
This is essentially the same as A051731, which includes only the triangle. Note that the standard in the OEIS is left to right antidiagonals, which would make this the left summatory matrix, and A077049 the right one. - Franklin T. Adams-Watters, Apr 08 2009
Sum of column k is A000005. - Geoffrey Critzer, Mar 29 2015

Examples

			Northwest corner:
1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
		

Crossrefs

Programs

  • Mathematica
    (* returns the northwest corner *) nn = 20; Table[PadRight[Drop[CoefficientList[Series[x^n/(1 - x^n), {x, 0, nn}], x],1], nn], {n, 1, nn}] // Grid (* Geoffrey Critzer, Mar 29 2015 *)

Formula

T(n, k)=1 if n|k else T(n, k)=0.
From Boris Putievskiy, May 08 2013: (Start)
As table T(n,k)= floor(n/k)-floor((n-1)/k).
As linear sequence a(n) = floor(A002260(n)/A004736(n)) - floor((A002260(n)-1)/A004736(n));
a(n) = floor(i/j) - floor((i-1)/j), where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). (End)
G.f. for row n: x^n/(1-x^n). - Geoffrey Critzer, Mar 29 2015

A077050 Left Moebius transformation matrix, M, by antidiagonals.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1
Offset: 1

Views

Author

Clark Kimberling, Oct 22 2002

Keywords

Comments

If S=(s(1),s(2),...) is a sequence written as a column vector, then M*S is the Moebius transform of S; i.e. its n-th term is Sum{mu(k)*s(k): k|n}. If s(n)=n, then M*S(n)=phi(n), the Euler totient function, A000010. Row sums: 0 for n>=2.

Examples

			Northwest corner:
1 0 0 0 0 0
-1 1 0 0 0 0
-1 0 1 0 0 0
0 -1 0 1 0 0
-1 0 0 0 1 0
1 -1 -1 0 0 1
		

Crossrefs

Programs

  • PARI
    nn=10; matrix(nn, nn, n, k, if (n % k, 0, 1))^(-1) \\ Michel Marcus, May 21 2015

Formula

M = T^(-1), where T is the left summatory matrix, A077049.

A077478 Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2002

Keywords

Comments

Antidiagonal sums of R, alias row sums of T, are essentially A065608. Diagonal elements of R comprise A000203 (sums of divisors of n).
Antidiagonals of an array formed by A051731 * A051731 (transposed). - Gary W. Adamson, Nov 12 2007
If R(n) is the n X n Redheffer matrix (A143104) and Rt(n) is its transposed matrix, then this sequence seems to be formed by R(n)*Rt(n). - Enrique Pérez Herrero, Feb 21 2012

Examples

			First few rows of the array R are:
  1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 2, 1, 2, 1, ...
  1, 1, 2, 1, 1, 2, 1, ...
  1, 2, 1, 3, 1, 2, 1, ...
  1, 1, 1, 1, 2, 1, 1, ...
  1, 2, 2, 2, 1, 4, 1, ...
  ...
First few rows of the triangle T are:
  1;
  1, 1;
  1, 2, 1;
  1, 1, 1, 1;
  1, 2, 2, 2, 1;
  1, 1, 1, 1, 1, 1;
  1, 2, 1, 3, 1, 3, 1;
  1, 1, 2, 1, 1, 2, 1, 1;
  1, 2, 1, 2, 2, 2, 1, 2, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1;
  ...
R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=DivisorSigma[0,GCD[n,k]]; Flatten[Table[T[n-k+1,k],{n,14},{k,n}]] (* Stefano Spezia, May 23 2021 *)

Formula

R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by Leroy Quet, Apr 08 2009]
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - Mats Granvik, May 19 2021

Extensions

Edited by N. J. A. Sloane, Jan 11 2009

A177121 Square array T(n,k) read by antidiagonals up: T(n,k) = 1 if n=1; otherwise if n divides k then T(n,k) = -n+1; otherwise T(n,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, 1, -1, 1, 1, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, 1, -4, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -5, 1, -3, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik and Gary W. Adamson, May 03 2010

Keywords

Comments

Replace the first column in A077049 with any k-th column in A177121 (this array) to get a new array. Then the matrix inverse of the new array will have the k-th column of A054535 (Ramanujan sum) as its first column.
Obtained from A176079 by transposing, flipping signs, and adding a lower triangle of all -1's. - R. J. Mathar, Jul 08 2011

Examples

			Table begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1, -1,  1, -1,  1, -1,  1, -1,  1, -1, ...
  1,  1, -2,  1,  1, -2,  1,  1, -2,  1, ...
  1,  1,  1, -3,  1,  1,  1, -3,  1,  1, ...
  1,  1,  1,  1, -4,  1,  1,  1,  1, -4, ...
  1,  1,  1,  1,  1, -5,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1, -6,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1, -7,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1, -8,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, -9, ...
  ...
		

Crossrefs

Programs

  • Excel
    =if(row()=1;1;if(mod(column();row())=0;-row()+1;1))
    
  • PARI
    up_to = 65703; \\ = binomial(362+1,2)
    A177121sq(row,col) = if(1==row,1,if(!(col%row),(1-row),1));
    A177121list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A177121sq((a-(col-1)),col))); (v); };
    v177121 = A177121list(up_to);
    A177121(n) = v177121[n]; \\ Antti Karttunen, Sep 25 2018

Formula

T(n,k) = 1 if n=1; otherwise, if n divides k then T(n,k) = -n+1; otherwise T(n,k) = 1.
Showing 1-10 of 14 results. Next