A097828 Partial sums of Chebyshev sequence S(n,13)= U(n,13/2)=A078362(n).
1, 14, 182, 2353, 30408, 392952, 5077969, 65620646, 847990430, 10958254945, 141609323856, 1829962955184, 23647909093537, 305592855260798, 3949059209296838, 51032176865598097, 659469240043478424
Offset: 0
Links
Crossrefs
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
Formula
a(n) = sum(S(k, 13), k=0..n) with S(k, 13)=U(k, 13/2)=A078362(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-13*x+x^2)) = 1/(1-14*x+14*x^2-x^3).
a(n) = 14*a(n-1)-14*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=14.
a(n) = 13*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 13) - S(n, 13) -1)/11.
Comments