cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A206245 Number of partitions of n into repunit powers, cf. A083278.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 05 2012

Keywords

Comments

a(n) = A206244(n) for n <= 120, a(n) > A206244(n) for n > 120.

Crossrefs

Programs

  • Haskell
    a206245 = p a083278_list where
       p _      0 = 1
       p rps'@(rp:rps) n = if n < rp then 0 else p rps' (n - rp) + p rps n

A002275 Repunits: (10^n - 1)/9. Often denoted by R_n.

Original entry on oeis.org

0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0

Views

Author

Keywords

Comments

R_n is a string of n 1's.
Base-4 representation of Jacobsthal bisection sequence A002450. E.g., a(4)= 1111 because A002450(4)= 85 (in base 10) = 64 + 16 + 4 + 1 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 1. - Paul Barry, Mar 12 2004
Except for the first two terms, these numbers cannot be perfect squares, because x^2 != 11 (mod 100). - Zak Seidov, Dec 05 2008
For n >= 0: a(n) = (A000225(n) written in base 2). - Jaroslav Krizek, Jul 27 2009, edited by M. F. Hasler, Jul 03 2020
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Except 0, 1 and 11, all these integers are Brazilian numbers, A125134. - Bernard Schott, Dec 24 2012
Numbers n such that 11...111 = R_n = (10^n - 1)/9 is prime are in A004023. - Bernard Schott, Dec 24 2012
The terms 0 and 1 are the only squares in this sequence, as a(n) == 3 (mod 4) for n>=2. - Nehul Yadav, Sep 26 2013
For n>=2 the multiplicative order of 10 modulo the a(n) is n. - Robert G. Wilson v, Aug 20 2014
The above is a special case of the statement that the order of z modulo (z^n-1)/(z-1) is n, here for z=10. - Joerg Arndt, Aug 21 2014
From Peter Bala, Sep 20 2015: (Start)
Let d be a divisor of a(n). Let m*d be any multiple of d. Split the decimal expansion of m*d into 2 blocks of contiguous digits a and b, so we have m*d = 10^k*a + b for some k, where 0 <= k < number of decimal digits of m*d. Then d divides a^n - (-b)^n (see McGough). For example, 271 divides a(5) and we find 2^5 + 71^5 = 11*73*271*8291 and 27^5 + 1^5 = 2^2*7*31*61*271 are both divisible by 271. Similarly, 4*271 = 1084 and 10^5 + 84^5 = 2^5*31*47*271*331 while 108^5 + 4^5 = 2^12*7*31*61*271 are again both divisible by 271. (End)
Starting with the second term this sequence is the binary representation of the n-th iteration of the Rule 220 and 252 elementary cellular automaton starting with a single ON (black) cell. - Robert Price, Feb 21 2016
If p > 5 is a prime, then p divides a(p-1). - Thomas Ordowski, Apr 10 2016
0, 1 and 11 are only terms that are of the form x^2 + y^2 + z^2 where x, y, z are integers. In other words, a(n) is a member of A004215 for all n > 2. - Altug Alkan, May 08 2016
Except for the initial terms, the binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 17 2017
The term "repunit" was coined by Albert H. Beiler in 1964. - Amiram Eldar, Nov 13 2020
q-integers for q = 10. - John Keith, Apr 12 2021
Binomial transform of A001019 with leading zero. - Jules Beauchamp, Jan 04 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 235-237.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
  • Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
  • Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.

Crossrefs

Programs

  • Haskell
    a002275 = (`div` 9) . subtract 1 . (10 ^)
    a002275_list = iterate ((+ 1) . (* 10)) 0
    -- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
    
  • Magma
    [(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
    
  • Maple
    seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
  • Mathematica
    Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *)
    Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[n]:=11*a[n-1]-10*a[n-2]$
    A002275(n):=a[n]$
    makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
    
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
    
  • Python
    print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    [lucas_number1(n, 11, 10) for n in range(21)]  # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 10*a(n-1) + 1, a(0)=0.
a(n) = A000042(n) for n >= 1.
Second binomial transform of Jacobsthal trisection A001045(3n)/3 (A015565). - Paul Barry, Mar 24 2004
G.f.: x/((1-10*x)*(1-x)). Regarded as base b numbers, g.f. x/((1-b*x)*(1-x)). - Franklin T. Adams-Watters, Jun 15 2006
a(n) = 11*a(n-1) - 10*a(n-2), a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
a(n) = A125118(n,9) for n>8. - Reinhard Zumkeller, Nov 21 2006
a(n) = A075412(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
a(n) = A242614(n,A242622(n)). - Reinhard Zumkeller, Jul 17 2014
E.g.f.: (exp(9*x) - 1)*exp(x)/9. - Ilya Gutkovskiy, May 11 2016
a(n) = Sum_{k=0..n-1} 10^k. - Torlach Rush, Nov 03 2020
Sum_{n>=1} 1/a(n) = A065444. - Amiram Eldar, Nov 13 2020
From Elmo R. Oliveira, Aug 02 2025: (Start)
a(n) = A002283(n)/9 = A105279(n)/10.
a(n) = A010785(A017173(n-1)) for n >= 1. (End)

A340549 Smallest integer with exactly n divisors that are repunits.

Original entry on oeis.org

1, 11, 1111, 111111, 11222211, 111111111111, 1111222222221111, 11223344555544332211, 112244668899998866442211, 112357025813567765307519653211, 112244781144780011109977441077442211, 113491945266228931047738906599340328084311, 113378566812907968345622215431647587096554773311
Offset: 1

Views

Author

Bernard Schott, Jan 12 2021

Keywords

Comments

Previous name was: Integers whose number of divisors that are repunits sets a new record. From a(1) up to a(18), the terms of these two sequences are exactly the same.
From Bernard Schott, Jan 13 2022: (Start)
Repunit terms are: R_1, R_2, R_4, R_6, R_12, ... where R_m is A002275(m).
It appears that palindromes occur for n = 1 to 9 only. (End)
The indices of the n repunits that divide a(n) are given by the n-th row of A356184. - Bernard Schott, Sep 13 2022

Examples

			111111 has 4 divisors that are repunits: {1, 11, 111, 111111}; also, 111111 is the smallest integer that has at least 4 repunit divisors, hence 111111 is a term.
The 13 repunit divisors of a(13) are R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_12, R_14 and R_18.
		

Crossrefs

Similar, but with divisors that are: A087997 (palindromes), A355699 (repdigits).

Programs

  • Mathematica
    repQ[n_] := Union @ IntegerDigits[n] == {1}; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = DivisorSum[n, 1 &, repQ[#] &]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[4, 10^7] (* Amiram Eldar, Sep 05 2022 *)
  • PARI
    upto(n) = { l = List(); ulim = n; res = []; reps = vector(logint(n, 10)-1, i, 10^(i+1)\9); for(i = 0, #reps, process(1, i); ); listsort(l, 1); r = 0; for(i = 1, #l, c = f(l[i]); if(c > #res, res = concat(res, vector(c - #res, j, oo)); ); res[c] = min(res[c], l[i]) ); res }
    process(n, i) = { if(n <=ulim, listput(l, n); for(j = i + 1, #reps, c = lcm(n, reps[j]); process(c, j) ) ) }
    f(n) = my(u = logint(n, 10) + 2); 1 + sum(i = 1, u, n % (10^(i+1)\9) == 0) \\ David A. Corneth, Jan 12 2021, Jan 17 2022, Sep 12 2022

Extensions

a(5)-a(13) from David A. Corneth, Jan 12 2021
Definition modified by Bernard Schott, Sep 05 2022

A308365 Numbers which are products of repunits.

Original entry on oeis.org

1, 11, 111, 121, 1111, 1221, 1331, 11111, 12221, 12321, 13431, 14641, 111111, 122221, 123321, 134431, 135531, 147741, 161051, 1111111, 1222221, 1233321, 1234321, 1344431, 1356531, 1367631, 1478741, 1490841, 1625151, 1771561, 11111111, 12222221, 12333321
Offset: 1

Views

Author

Sergio Pimentel, May 22 2019

Keywords

Comments

The number of terms below 10^n is A216053(n)-1 for 1 <= n <= 25, but not for larger n. - Rémy Sigrist, May 28 2019
The product of repunits is not necessarily palindromic, see A339676. - Bernard Schott, Apr 02 2021

Examples

			a(11) = 13431 is in the sequence since it is the product of repunits (11^2*111).
		

Crossrefs

Cf. A002275 (repunits), A083278 (repunit powers), A216053, A339676 (nonpalindromic terms).

Programs

  • Maple
    d:= 10: # for terms < 10^d
    N:= 10^d:
    S:= {1}:
    for m from 2 to d do
      r:= (10^m-1)/9;
      k:= floor(log[r](N));
      V:= S;
      for i from 1 to k do
        V:= select(`<`,map(`*`,V,r),N);
        S:= S union V
      od;
    od:
    sort(convert(S,list)); # Robert Israel, Nov 26 2020

Extensions

Missing a(25) = 1356531 inserted by Ilya Gutkovskiy, Apr 14 2020

A334131 Numbers that can be written as a product of distinct repunits.

Original entry on oeis.org

0, 1, 11, 111, 1111, 1221, 11111, 12221, 111111, 122221, 123321, 1111111, 1222221, 1233321, 1356531, 11111111, 12222221, 12333321, 12344321, 13566531, 111111111, 122222221, 123333321, 123444321, 135666531, 135787531, 1111111111, 1222222221
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Examples

			13566531 = 11*111*11111. - _David A. Corneth_, Mar 26 2021
		

Crossrefs

A339676 Nonpalindromic numbers that are products of repunits.

Original entry on oeis.org

161051, 1490841, 1625151, 1771561, 14921841, 15043941, 16266151, 16399251, 17876661, 19487171, 137009631, 149231841, 149352841, 150574941, 151807041, 162676151, 164140251, 165483351, 178927661, 180391761, 196643271, 214358881, 1370219631, 1371330631, 1492331841
Offset: 1

Views

Author

Bernard Schott, Dec 12 2020

Keywords

Comments

The first term is A308365(19).
G. J. Simmons conjectured there are no palindromes of form n^k for k >= 5 (and n > 1) (see link, page 98). According to this conjecture, these perfect powers are terms: {11^k, k>=4}, {111^k, k>=4}, {1111^k, k>=3}, {11111^k, k>=3}, ...

Examples

			a(1) = 161051 = 11^5.
a(2) = 1490841 = 11^2 * 111^2.
a(3) = 1625151 = 11^4 * 111.
a(4) = 1771561 = 11^6.
a(5) = 14921841 = 11^2 * 111 * 1111.
		

Crossrefs

Intersection of A308365 and A029742.

Programs

  • Mathematica
    vec[max_] := Module[{m = Floor @ Log10[9*max + 1], r, s = {1}, s1}, r = (10^Range[2, m] - 1)/9; Do[emax = Floor@Log[r[[k]], max]; s1 = r[[k]]^Range[0, emax]; s = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &], {k, 1, m - 1}]; s]; Select[vec[1.5*10^9], !PalindromeQ[#] &] (* Amiram Eldar, Dec 12 2020 *)
Showing 1-6 of 6 results.