cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088765 a(n) = A087696(n)/2.

Original entry on oeis.org

4, 6, 9, 12, 18, 21, 24, 33, 39, 42, 51, 54, 66, 72, 81, 84, 93, 114, 117, 123, 138, 144, 156, 171, 177, 189, 192, 207, 213, 219, 222, 231, 252, 276, 291, 306, 318, 324, 339, 348, 357, 369, 378, 396, 408, 417, 429, 441, 462, 471, 486, 507, 513, 522, 528, 546
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Comments

"Example 3: Ordinary twins 2a +- 1 for a = 2, 3, 6, 9, 15, . . . have D = 1 and are in class I. For D = 3, the twins 2a +- 3 occur for a = 4, 5, 7, 8, 10"; the latter is this sequence, from p. 3 of Weber. - Jonathan Vos Post, Feb 14 2011

Crossrefs

Programs

  • Magma
    [n/2: n in [3..2000] |IsPrime(n+5) and IsPrime(n-5)]; // Vincenzo Librandi, May 20 2017
  • Mathematica
    Select[Range[3, 2000], PrimeQ[# + 5] && PrimeQ[# - 5] &] / 2 (* Vincenzo Librandi, May 20 2017 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, May 21 2017

A082467 Least k>0 such that n-k and n+k are both primes.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 12, 3, 2, 9, 6, 5, 6, 3, 4, 9, 12, 1, 12, 9, 4, 3, 6, 5, 6, 9, 2, 3, 12, 1, 24, 3, 2, 15, 6, 5, 12, 3, 8, 9, 6, 7, 12, 3, 4, 15, 12, 1, 18, 9, 4, 3, 6, 5, 6, 15, 2, 3, 12, 1, 6, 15, 4, 3, 6, 5, 18, 9, 2, 15, 24, 5, 12, 3, 14, 9, 18, 7, 12, 9, 4, 15, 6, 7, 30, 9
Offset: 4

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

The existence of k>0 for all n >= 4 is equivalent to the strong Goldbach Conjecture that every even number >= 8 is the sum of two distinct primes.
n and k are coprime, because otherwise n + k would be composite. So the rational sequence r(n) = a(n)/n = k/n is injective. - Jason Kimberley, Sep 21 2011
Because there are arbitrarily many composites from m!+2 to m!+m, there are also arbitrarily large a(n) but they increase very slowly. The twin prime conjecture implies that infinitely many a(n) are 1. - Juhani Heino, Apr 09 2020

Examples

			n=10: k=3 because 10-3 and 10+3 are both prime and 3 is the smallest k such that n +/- k are both prime.
		

Crossrefs

Cf. A129301 (records), A129302 (where records occur).
Cf. A047160 (allows k=0).
Cf. A078611 (subset for prime n).

Programs

  • Magma
    A082467 := func; [A082467(n):n in [4..98]]; // Jason Kimberley, Sep 03 2011
  • Maple
    A082467 := proc(n) local k; k := 1+irem(n,2);
    while n > k do if isprime(n-k) then if isprime(n+k)
    then RETURN(k) fi fi; k := k+2 od; print("Goldbach erred!") end:
    seq(A082467(i),i=4..90); # Peter Luschny, Sep 21 2011
  • Mathematica
    f[n_] := Block[{k}, If[OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; Table[ f[n], {n, 4, 98}] (* Robert G. Wilson v, Mar 28 2005 *)
  • PARI
    a(n)=if(n<0,0,k=1; while(isprime(n-k)*isprime(n+k) == 0,k++); k)
    

Formula

A078496(n)-a(n) = A078587(n)+a(n) = n.

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007

A087695 Numbers n such that n + 3 and n - 3 are both prime.

Original entry on oeis.org

8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Comments

A010051(a(n)-3) * A010051(a(n)+3) = 1. - Reinhard Zumkeller, Nov 17 2015

Crossrefs

Programs

  • Haskell
    a087695 n = a087695_list !! (n-1)
    a087695_list = filter
       (\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..]
    -- Reinhard Zumkeller, Nov 17 2015
    
  • Maple
    ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL),(p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
  • Mathematica
    lst={};Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
    Select[Range[600],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *)
  • PARI
    p=2; q=3; forprime(r=5,1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018

Formula

a(n) = A046117(n) - 3.

A087697 Numbers k such that k + 7 and k - 7 are both prime.

Original entry on oeis.org

10, 12, 24, 30, 36, 54, 60, 66, 90, 96, 120, 144, 156, 174, 186, 204, 234, 264, 270, 276, 300, 324, 360, 366, 390, 426, 450, 456, 516, 564, 570, 594, 600, 606, 624, 654, 666, 684, 726, 750, 780, 804, 816, 846, 870, 960, 984, 990
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [5..1000] | IsPrime(n-7) and IsPrime(n+7)]; // Vincenzo Librandi, Jul 23 2018
  • Maple
    select(t -> isprime(t+7) and isprime(t-7), [seq(i,i=8..1000,2)]); # Robert Israel, Jul 22 2018
  • Mathematica
    Rest[Select[Range[1000], PrimeQ[# - 7] && PrimeQ[# + 7] &]] (* Vincenzo Librandi, Jul 23 2018 *)
  • PARI
    isok(n) = isprime(n-7) && isprime(n+7); \\ Michel Marcus, Jul 23 2018
    

A087711 a(n) = smallest number k such that both k-n and k+n are primes.

Original entry on oeis.org

2, 4, 5, 8, 7, 8, 11, 10, 11, 14, 13, 18, 17, 16, 17, 22, 21, 20, 23, 22, 23, 26, 25, 30, 29, 28, 33, 32, 31, 32, 37, 36, 35, 38, 37, 38, 43, 42, 41, 44, 43, 48, 47, 46, 57, 52, 51, 50, 53, 52, 53, 56, 55, 56, 59, 58, 75, 70, 69, 72, 67, 66, 65, 68, 67, 72, 71, 70, 71, 80, 81, 78
Offset: 0

Views

Author

Zak Seidov, Sep 28 2003

Keywords

Comments

Let b(n), c(n) and d(n) be respectively, smallest number m such that phi(m-n) + sigma(m+n) = 2n, smallest number m such that phi(m+n) + sigma(m-n) = 2n and smallest number m such that phi(m-n) + sigma(m+n) = phi(m+n) + sigma(m-n), we conjecture that for each positive integer n, a(n)=b(n)=c(n)=d(n). Namely we conjecture that for each positive integer n, a(n) < A244446(n), a(n) < A244447(n) and a(n) < A244448(n). - Jahangeer Kholdi and Farideh Firoozbakht, Sep 05 2014

Examples

			n=10: k=13 because 13-10 and 13+10 are both prime and 13 is the smallest k such that k +/- 10 are both prime
4-1=3, prime, 4+1=5, prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13, ...
		

Crossrefs

Programs

  • Magma
    distance:=function(n); k:=n+2; while not IsPrime(k-n) or not IsPrime(k+n) do k:=k+1; end while; return k; end function; [ distance(n): n in [1..71] ]; /* Klaus Brockhaus, Apr 08 2007 */
    
  • Maple
    Primes:= select(isprime,{seq(2*i+1,i=1..10^3)}):
    a[0]:= 2:
    for n from 1 do
      Q:= Primes intersect map(t -> t-2*n,Primes);
      if nops(Q) = 0 then break fi;
      a[n]:= min(Q) + n;
    od:
    seq(a[i],i=0..n-1); # Robert Israel, Sep 08 2014
  • Mathematica
    s = ""; k = 0; For[i = 3, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ","; k++ ]; i++ ]; Print[s] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2008 *)
    snk[n_]:=Module[{k=n+1},While[!PrimeQ[k+n]||!PrimeQ[k-n],k++];k]; Array[ snk,80,0] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    a(n)=my(k);while(!isprime(k-n) || !isprime(k+n),k++);return(k) \\ Edward Jiang, Sep 05 2014

Formula

a(n) = A020483(n)+n for n >= 1. - Robert Israel, Sep 08 2014

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007

A154713 Cubes such that cube-+5 are primes.

Original entry on oeis.org

8, 1728, 110592, 287496, 474552, 2000376, 7077888, 34012224, 191102976, 401947272, 631628712, 5890514616, 14996130696, 15550119936, 19421724672, 32339798856, 35158608576, 62949797352, 68518346688, 76657300992
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^3;If[PrimeQ[p-5]&&PrimeQ[p+5],AppendTo[lst,p]],{n,2,2*7!,2}];lst
    Select[Range[4300]^3,And@@PrimeQ[#+{5,-5}]&] (* Harvey P. Dale, Jun 19 2012 *)

Formula

A087696 INTERSECT A000578. [From R. J. Mathar, Jan 15 2009]

A293271 Numbers n such that n - p and n + p are both prime for some prime p.

Original entry on oeis.org

5, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 30, 32, 34, 36, 39, 40, 42, 44, 45, 46, 48, 50, 54, 56, 60, 64, 66, 69, 70, 72, 76, 78, 81, 84, 86, 90, 92, 96, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 116, 120, 126, 129, 130, 132, 134, 138, 140, 142
Offset: 1

Views

Author

Gionata Neri, Oct 04 2017

Keywords

Comments

Apart from a(1), all terms are composite.
Union of A087679 and 2*A063713. - Robert Israel, Oct 09 2017

Crossrefs

Cf. A087679, A087695, A087696, A087697 (subsequences).
Cf. A063713.

Programs

  • Maple
    filter:= proc(n) local k;
      k:= 1;
      while k < n do
        k:= nextprime(k);
        if isprime(n+k) and isprime(n-k) then return true fi
      od;
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Oct 09 2017
  • Mathematica
    Select[Range@ 142, Function[n, AnyTrue[Prime@ Range@ PrimePi@ n, PrimeQ[n + {-#, #}] == {True, True} &]]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    a(n) = forprime(p=1, n, i=n-p; j=n+p; if(isprime(i)&&isprime(j), n; break))
Showing 1-7 of 7 results.