A175586 Duplicate of A089995.
10, 14, 21, 22, 26, 33, 34, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 145
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Gus Wiseman_, May 27 2021: (Start) The sequence of terms together with their prime factors begins: 4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47 6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71 9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13 10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29 14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73 15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31 21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79 22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53 25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23 26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83 33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13 34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59 35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89 38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61 39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37 (End)
a001358 n = a001358_list !! (n-1) a001358_list = filter ((== 2) . a001222) [1..]
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc: seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *) Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
from sympy import factorint def ok(n): return sum(factorint(n).values()) == 2 print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
from math import isqrt from sympy import primepi, prime def A001358(n): def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
a084127 = a006530 . a001358 -- Reinhard Zumkeller, Nov 25 2012
FactorInteger[#][[-1, 1]]& /@ Select[Range[1000], PrimeOmega[#] == 2&] (* Jean-François Alcover, Nov 17 2021 *)
lista(nn) = {for (n=2, nn, if (bigomega(n)==2, f = factor(n); print1(f[length(f~),1], ", ")););} \\ Michel Marcus, Jun 05 2013
from math import isqrt from sympy import primepi, primerange, primefactors def A084127(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return max(primefactors(bisection(f,n,n))) # Chai Wah Wu, Oct 23 2024
a084126 = a020639 . a001358 -- Reinhard Zumkeller, Nov 25 2012
FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
from sympy import primepi, primerange, primefactors def A084126(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return min(primefactors(bisection(f,n,n))) # Chai Wah Wu, Apr 03 2025
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 5: {3} 7: {4} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 17: {7} 19: {8} 21: {2,4} 22: {1,5} 23: {9} 26: {1,6} 29: {10} 31: {11} 33: {2,5} 34: {1,7} 37: {12}
Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021
The sequence of terms together with their prime indices begins: 1: {} 10: {1,3} 14: {1,4} 21: {2,4} 22: {1,5} 26: {1,6} 33: {2,5} 34: {1,7} 38: {1,8} 39: {2,6} 46: {1,9} 51: {2,7} 55: {3,5} 57: {2,8} 58: {1,10} 62: {1,11} 65: {3,6} 69: {2,9} 74: {1,12} 82: {1,13}
Select[Range[100],!PrimeQ[#]&&Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
pbfs[n_]:=Module[{f=PrimePi/@Transpose[FactorInteger[n]][[1]]}, Max[ 0,Last[f]-First[f]-1]]; pbfs/@Select[Range[300],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 09 2012 *)
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 5: {3} 7: {4} 11: {5} 13: {6} 14: {1,4} 17: {7} 19: {8} 22: {1,5} 23: {9} 26: {1,6} 29: {10} 31: {11} 33: {2,5} 34: {1,7} 37: {12} 38: {1,8} 39: {2,6}
filter:= proc(n) local F; F:= ifactors(n)[2]; if ormap(t -> t[2]>1, F) then return false fi; if nops(F) <= 1 then return true fi; F:= map(numtheory:-pi,sort(map(t -> t[1],F))); min(F[2..-1]-F[1..-2]) >= 3; end proc: select(filter, [$1..200]); # Robert Israel, Apr 08 2019
Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>2&]
Comments