A097315
Pell equation solutions (3*b(n))^2 - 10*a(n)^2 = -1 with b(n) = A097314(n), n >= 0.
Original entry on oeis.org
1, 37, 1405, 53353, 2026009, 76934989, 2921503573, 110940200785, 4212806126257, 159975692596981, 6074863512559021, 230684837784645817, 8759948972303982025, 332647376109766671133, 12631840343198829521029, 479677285665445755127969, 18215105014943739865341793, 691694313282196669127860165
Offset: 0
(x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1.
G.f. = 1 + 37*x + 1405*x^2 + 53353*x^3 + ... - _Michael Somos_, Feb 24 2023
- Indranil Ghosh, Table of n, a(n) for n = 0..631
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Cf. similar sequences listed in
A238379.
-
a:=[1,37];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
-
I:=[1, 37]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019
-
CoefficientList[Series[(1-x)/(1-38x+x^2), {x,0,20}], x] (* Michael De Vlieger, Feb 04 2017 *)
LinearRecurrence[{38,-1}, {1,37}, 21] (* G. C. Greubel, Aug 01 2019 *)
-
Vec((1-x)/(1-38*x+x^2) + O(x^20)) \\ Michel Marcus, Jun 04 2015
-
from itertools import islice
def A097315_gen(): # generator of terms
x, y = 30, 10
while True:
yield y//10
x, y = x*19+y*60, x*6+y*19
A097315_list = list(islice(A097315_gen(),20)) # Chai Wah Wu, Apr 24 2025
-
((1-x)/(1-38*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
Typo in recurrence formula corrected by Laurent Bonaventure (bonave(AT)free.fr), Oct 03 2010
A078987
Chebyshev U(n,x) polynomial evaluated at x=19.
Original entry on oeis.org
1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..632
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18), this sequence (m=19),
A097316 (m=33).
-
m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
-
seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
-
lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
-
a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
-
Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
-
[lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
-
[chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A097775
Pell equation solutions (14*a(n))^2 - 197*b(n)^2 = -1 with b(n) = A097776(n), n >= 0.
Original entry on oeis.org
1, 787, 618581, 486203879, 382155630313, 300373839222139, 236093455472970941, 185569155627915937487, 145857120230086453893841, 114643510931692324844621539, 90109653735189937241418635813, 70826073192348358979430203127479, 55669203419532074967894898239562681
Offset: 0
(x,y) = (14*1=14;1), (11018=14*787;785), (8660134=14*618581;617009), ... give the positive integer solutions to x^2 - 197*y^2 =-1.
Cf. similar sequences of the type (1/k)*sinh((2*n + 1)*arcsinh(k)):
A002315 (k=1),
A049629 (k=2),
A097314 (k=3),
A078989 (k=4),
A097726 (k=5),
A097729 (k=6),
A097732 (k=7),
A097735 (k=8),
A097738 (k=9),
A097741 (k=10),
A097766 (k=11),
A097769 (k=12),
A097772 (k=13), this sequence (k=14).
-
LinearRecurrence[{786, -1}, {1, 787}, 20] (* Harvey P. Dale, Dec 12 2017 *)
-
Vec((1+x)/(1-2*393*x+x^2) + O(x^100)) \\ Colin Barker, Apr 04 2015
A157014
Expansion of x*(1-x)/(1 - 22*x + x^2).
Original entry on oeis.org
1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1
Cf. similar sequences listed in
A238379.
-
a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
-
seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
-
CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041049 *)
a[30, 20] (* Gerry Martens, Jun 07 2015 *)
Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
-
Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
-
[chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
A195616
Denominators of Pythagorean approximations to 3.
Original entry on oeis.org
12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1
-
I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
r = 3; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195616, A195617 *)
Sqrt[a^2 + b^2] (* A097315 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A157881
Expansion of 152*x^2 / (-x^3+1443*x^2-1443*x+1).
Original entry on oeis.org
0, 152, 219336, 316282512, 456079163120, 657665836936680, 948353680783529592, 1367525350024012735136, 1971970606380945580536672, 2843580246875973503121146040, 4100440744024547410555112053160, 5912832709303150490046968459510832
Offset: 1
-
LinearRecurrence[{1443,-1443,1},{0,152,219336},20] (* Harvey P. Dale, Jul 18 2019 *)
-
concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016
A226694
Pell equation solutions (32*a(n))^2 - 41*(5*b(n))^2 = -1 with b(n) := A226695(n), n>=0.
Original entry on oeis.org
1, 4099, 16797701, 68836974599, 282093905109001, 1156020754299711499, 4737372769026312613901, 19413752451449074792054799, 79557552808665539471527952401, 326026831996158929305246756884499, 1336057877962706483627361738184724501
Offset: 0
Pell n=0: 32^2 - 41*5^2 = -1.
Pell n=1: (32*4099)^2 - 41*(5*4097)^2 = -1.
-
LinearRecurrence[{4098,-1},{1,4099},20] (* Harvey P. Dale, Sep 23 2017 *)
A309330
Numbers k such that 10*k^2 + 40 is a square.
Original entry on oeis.org
6, 234, 8886, 337434, 12813606, 486579594, 18477210966, 701647437114, 26644125399366, 1011775117738794, 38420810348674806, 1458979018131903834, 55402781878663670886, 2103846732371087589834, 79890773048222664742806
Offset: 1
a(2) = 234, and 10*234^2 + 40 is indeed a perfect square (it's 740^2) and furthermore the continued fraction [234, 234, 234, 234, ...] equals 117 + 37*sqrt(10), which is indeed in Q(sqrt(10)).
-
LinearRecurrence[{38, -1}, {6, 234}, 15]
-
Vec(6*x*(1 + x) / (1 - 38*x + x^2) + O(x^20)) \\ Colin Barker, Jul 24 2019
Showing 1-8 of 8 results.
Comments