cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A010054 a(n) = 1 if n is a triangular number, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

This is essentially the q-expansion of the Jacobi theta function theta_2(q). (In theta_2 one has to ignore the initial factor of 2*q^(1/4) and then replace q by q^(1/2). See also A005369.) - N. J. A. Sloane, Aug 03 2014
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's theta function f(a, b) = Sum_{n=-inf..inf} a^(n*(n+1)/2) * b^(n*(n-1)/2).
This sequence is the concatenation of the base-b digits in the sequence b^n, for any base b >= 2. - Davis Herring (herring(AT)lanl.gov), Nov 16 2004
Number of partitions of n into distinct parts such that the greatest part equals the number of all parts, see also A047993; a(n)=A117195(n,0) for n > 0; a(n) = 1-A117195(n,1) for n > 1. - Reinhard Zumkeller, Mar 03 2006
Triangle T(n,k), 0 <= k <= n, read by rows, given by A000007 DELTA A000004 where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
Convolved with A000041 = A022567, the convolution square of A000009. - Gary W. Adamson, Jun 11 2009
A008441(n) = Sum_{k=0..n} a(k)*a(n-k). - Reinhard Zumkeller, Nov 03 2009
Polcoeff inverse with alternate signs = A006950: (1, 1, 1, 2, 3, 4, 5, 7, ...). - Gary W. Adamson, Mar 15 2010
This sequence is related to Ramanujan's two-variable theta functions because this sequence is also the characteristic function of generalized hexagonal numbers. - Omar E. Pol, Jun 08 2012
Number 3 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
Number of partitions of n into consecutive parts that contain 1 as a part, n >= 1. - Omar E. Pol, Nov 27 2020
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). The constant whose expansion in any base b >= 2 is this sequence is irrational (Bundschuh, 1984). - Amiram Eldar, Mar 23 2025

Examples

			G.f. = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 + x^45 + x^55 + x^66 + ...
G.f. for B(q) = q * A(q^8): q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + q^225 + q^289 + q^361 + ...
From _Philippe Deléham_, Jan 04 2008: (Start)
As a triangle this begins:
  1;
  1, 0;
  1, 0, 0;
  1, 0, 0, 0;
  1, 0, 0, 0, 0;
  1, 0, 0, 0, 0, 0;
  ...  (End)
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 103.
  • Michael D. Hirschhorn, The Power of q, Springer, 2017. See Psi, page 9.
  • Jules Tannery and Jules Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27.
  • Edmund T. Whittaker and George N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A106507 (reciprocal series).

Programs

  • Clojure
    (def A010054 (mapcat #(cons 1 (replicate % 0)) (range))) ; Tony Zorman, Apr 03 2023
  • Haskell
    a010054 = a010052 . (+ 1) . (* 8)
    a010054_list = concatMap (\x -> 1 : replicate x 0) [0..]
    -- Reinhard Zumkeller, Feb 12 2012, Oct 22 2011, Apr 02 2011
    
  • Magma
    Basis( ModularForms( Gamma0(16), 1/2), 362) [2] ; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    A010054 := proc(n)
        if issqr(1+8*n) then
            1;
        else
            0;
        end if;
    end proc:
    seq(A010054(n),n=0..80) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := SquaresR[ 1, 8 n + 1] / 2; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^2], {x, 0, n + Floor @ Sqrt[n]}] // Normal // TrigToExp) /. {y -> x}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[If[IntegerQ[(Sqrt[8n+1]-1)/2],1,0],{n,0,110}] (* Harvey P. Dale, Oct 29 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    Module[{tr=Accumulate[Range[20]]},If[MemberQ[tr,#],1,0]&/@Range[Max[tr]]] (* Harvey P. Dale, Mar 13 2023 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A), n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    {a(n) = issquare( 8*n + 1)}; /* Michael Somos, Apr 27 2000 */
    
  • PARI
    a(n) = ispolygonal(n, 3); \\ Michel Marcus, Jan 22 2015
    
  • Python
    from sympy import integer_nthroot
    def A010054(n): return int(integer_nthroot((n<<3)+1,2)[1]) # Chai Wah Wu, Nov 15 2022
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(-1, 0)
    a = EulerTransform(b)
    print([a(n) for n in range(88)]) # Peter Luschny, Nov 17 2022
    

Formula

Expansion of f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-1) * (phi(q) - phi(q^4)) / 2 in powers of q^8. - Michael Somos, Jul 01 2014
Expansion of q^(-1/8) * eta(q^2)^2 / eta(q) in powers of q. - Michael Somos, Apr 13 2005
Euler transform of period 2 sequence [ 1, -1, ...]. - Michael Somos, Mar 24 2003
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u6^3 + u2*u3^3 - u1*u2^2*u6. - Michael Somos, Apr 13 2005
a(n) = b(8*n + 1) where b()=A098108() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p > 2. - Michael Somos, Jun 06 2005
a(n) = A005369(2*n). - Michael Somos, Apr 29 2003
G.f.: theta_2(sqrt(q)) / (2 * q^(1/8)).
G.f.: 1 / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / ...))))))))). - Michael Somos, May 11 2012
G.f.: Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, May 02 2002
a(0)=1; for n>0, a(n) = A002024(n+1)-A002024(n). - Benoit Cloitre, Jan 05 2004
G.f.: Sum_{j>=0} Product_{k=0..j} x^j. - Jon Perry, Mar 30 2004
a(n) = floor((1-cos(Pi*sqrt(8*n+1)))/2). - Carl R. White, Mar 18 2006
a(n) = round(sqrt(2n+1)) - round(sqrt(2n)). - Hieronymus Fischer, Aug 06 2007
a(n) = ceiling(2*sqrt(2n+1)) - floor(2*sqrt(2n)) - 1. - Hieronymus Fischer, Aug 06 2007
a(n) = f(n,0) with f(x,y) = if x > 0 then f(x-y,y+1), otherwise 0^(-x). - Reinhard Zumkeller, Sep 27 2008
a(n) = A035214(n) - 1.
From Mikael Aaltonen, Jan 22 2015: (Start)
Since the characteristic function of s-gonal numbers is given by floor(sqrt(2n/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)) - floor(sqrt(2(n-1)/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)), by setting s = 3 we get the following: For n > 0, a(n) = floor(sqrt(2*n+1/4)-1/2) - floor(sqrt(2*(n-1)+1/4)-1/2).
(End)
a(n) = (-1)^n * A106459(n). - Michael Somos, May 04 2016
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(-1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A002448. - Michael Somos, May 05 2016
G.f.: Sum_{n >= 0} x^(n*(n+1)/2) = Product_{n >= 1} (1 - x^n)*(1 + x^n)^2 = Product_{n >= 1} (1 - x^(2*n))*(1 + x^n) = Product_{n >= 1} (1 - x^(2*n))/(1 - x^(2*n-1)). From the sum and product representations of theta_2(0, sqrt(q))/(2*q^(1/8)) function. The last product, given by Vladeta Jovovic above, is obtained from the second to last one by an Euler identity, proved via f(x) := Product_{n >= 1} (1 - x^(2*n-1))*Product_{n >= 1} (1 + x^n) = f(x^2), by moving the odd-indexed factors of the second product to the first product. This leads to f(x) = f(0) = 1. - Wolfdieter Lang, Jul 05 2016
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 08 2017
G.f.: Sum_{n >= 0} x^n * Product_{k >= n+1} (1 - x^(2*k)) = 1/(1 - x) * Sum_{n >= 0} x^(3*n) * Product_{k >= n+1} (1 - x^(2*k)) = 1/((1 - x)*(1 - x^3)) * Sum_{n >= 0} x^(5*n) * Product_{k >= n+1} (1 - x^(2*k)) = .... - Peter Bala, Jun 24 2025

Extensions

Additional comments from Michael Somos, Apr 27 2000

A006950 G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 196, 236, 287, 350, 420, 501, 602, 722, 858, 1016, 1206, 1431, 1687, 1981, 2331, 2741, 3206, 3740, 4368, 5096, 5922, 6868, 7967, 9233, 10670, 12306, 14193, 16357, 18803, 21581
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n in which all odd parts are distinct. There is no restriction on the even parts. E.g., a(9)=13 because "9 = 8+1 = 7+2 = 6+3 = 6+2+1 = 5+4 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 4+2+2+1 = 3+2+2+2 = 2+2+2+2+1". - Noureddine Chair, Feb 03 2005
Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.
Also the number of partitions of n into parts not congruent to 2 mod 4. - James Sellers, Feb 08 2002
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras o(n) of skew-symmetric n X n matrices, n=0,1,2,3,... (the cases n=0,1 being degenerate). This sequence, A015128 and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=2.
Equals polcoeff inverse of A010054 with alternate signs. - Gary W. Adamson, Mar 15 2010
It appears that this sequence is related to the generalized hexagonal numbers (A000217) in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: this is 1 together with the row sums of triangle A195836, also column 1 of A195836, also column 2 of the square array A195825. - Omar E. Pol, Oct 09 2011
Since this is also column 2 of A195825 so the sequence contains only one plateau [1, 1, 1] of level 1 and length 3. For more information see A210843. - Omar E. Pol, Jun 27 2012
Convolution of A035363 and A000700. - Vaclav Kotesovec, Aug 17 2015
Also the number of ways to stack n triangles in a valley (pointing upwards or downwards depending on row parity). - Seiichi Manyama, Jul 07 2018

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
G.f. = q^-1 + q^7 + q^15 + 2*q^23 + 3*q^31 + 4*q^39 + 5*q^47 + 7*q^55 + 10*q^63 + ...
From _Seiichi Manyama_, Jul 07 2018: (Start)
n | the ways to stack n triangles in a valley
--+------------------------------------------------------
1 | *---*
  |  \ /
  |   *
  |
2 |   *
  |  / \
  | *---*
  |  \ /
  |   *
  |
3 |   *---*     *---*
  |  / \ /       \ / \
  | *---*         *---*
  |  \ /           \ /
  |   *             *
  |
4 |     *                       *
  |    / \                     / \
  |   *---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*
  |  \ /           \ /           \ /
  |   *             *             *
  |
5 |     *---*         *         *         *---*
  |    / \ /         / \       / \         \ / \
  |   *---*     *---*---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |
6 |       *
  |      / \
  |     *---*         *---*     *   *     *---*
  |    / \ /         / \ /     / \ / \     \ / \
  |   *---*     *---*---*     *---*---*     *---*---*
  |  / \ /       \ / \ /       \ / \ /       \ / \ /
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |   *
  |  / \
  | *---*
  |  \ / \
  |   *---*
  |    \ / \
  |     *---*
  |      \ /
  |       *
(End)
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See pod, page 297.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A163203.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 06 2013
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^(2k - 1))/(1 - x^(2k)), {k, 25}], {x, 0, 50}], x] (* Robert G. Wilson v, Jun 28 2012 *)
    CoefficientList[Series[x*QPochhammer[-1/x, x^2] / ((1+x)*QPochhammer[x^2, x^2]), {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    CoefficientList[Series[2*(-x)^(1/8) / EllipticTheta[2, 0, Sqrt[-x]], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-Mod[i, 2]]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Jul 22 2009
    (GW-BASIC)
    ' A program with two A-numbers (Note that here A000217 are the generalized hexagonal numbers):
    10 Dim A000217(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 51: For j = 1 to n
    30 If A000217(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A000217(j))
    40 Next j: Print a(n-1);: Next n ' Omar E. Pol, Jun 10 2012

Formula

a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*A002129(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/Sum_{k>=0} (-x)^(k*(k+1)/2). - Vladeta Jovovic, Sep 22 2002 [corrected by Vaclav Kotesovec, Aug 17 2015]
a(n) = A059777(n-1)+A059777(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: Product_{m>=1} (1+x^m)^(if A001511(m) > 1, A001511(m)-1 else A001511(m)). - Jon Perry, Apr 15 2005
Expansion of 1 / psi(-x) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(1/8) * eta(q^2) / (eta(q) * eta(q^4)) in powers of q.
Convolution inverse of A106459. - Michael Somos, Nov 02 2005
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ). - Paul D. Hanna, Jul 22 2009
a(n) ~ (8*n+1) * cosh(sqrt(8*n-1)*Pi/4) / (16*sqrt(2)*n^2) - sinh(sqrt(8*n-1)*Pi/4) / (2*Pi*n^(3/2)) ~ exp(Pi*sqrt(n/2))/(4*sqrt(2)*n) * (1 - (2/Pi + Pi/16)/sqrt(2*n) + (3/16 + Pi^2/1024)/n). - Vaclav Kotesovec, Aug 17 2015, extended Jan 09 2017
Can be computed recursively by Sum_{j>=0} (-1)^(ceiling(j/2)) a(n - j(j+1)/2) = 0, for n > 0. [Merca, Theorem 4.3] - Eric M. Schmidt, Sep 21 2017
a(n) = A000041(n) - A085642(n), for n >= 1. - Wouter Meeussen, Dec 20 2017

Extensions

G.f. and more terms from Vladeta Jovovic, Feb 05 2002

A089807 Expansion of Jacobi theta function (3theta_3(q^9)-theta_3(q))/2.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^5, b = x. - Michael Somos, Jul 12 2012
Number 11 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - q - q^4 + 2*q^9 - q^16 - q^25 + 2*q^36 - q^49 - q^64 + 2*q^81 + ...
		

Crossrefs

Related to the 14 primitive eta-products which are holomorphic modular forms of weight 1/2: A000122, A002448, A010054, A010815, A080995, A089801, A089802, this sequence, A089810, A089812, A106459, A121373, A133985, A133988. - Seiichi Manyama, May 15 2017

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/3, q], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 3, 0, q^9] - EllipticTheta[ 3, 0, q])/2, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3, q^6] EllipticTheta[ 2, 0, Sqrt[ -q]] / (2 (-q)^(1/8)), {q, 0, n}] (* Michael Somos, Jul 12 2012 *);
  • PARI
    {a(n) = if( n<1, n==0, issquare(n) * (3*(n%3==0) - 1))}; /* Michael Somos, Nov 05 2005 */

Formula

a(n) = -b(n) where b() is multiplicative with b(3^e) = -2(1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Expansion of eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 0, -1, -1, -1, -1, -1, 0, 0, -1, -1, ...].
G.f.: (Sum_{k in Z} 3 * x^((3*k)^2) - x^(k^2)) / 2 = Product_{k>0} (1 - x^k) / ((1 - x^(12*k - 2)) * (1 - x^(12*k - 3)) * (1 - x^(12*k - 9)) * (1 - x^(12*k - 10))). (End)
Expansion of Jacobi theta function theta_3(Pi/3, q) in powers of q. - Michael Somos, Jan 26 2006
Expansion of chi(q^3) * psi(-q) in powers of q where chi(), psi() are Ramanujan theta functions. - Michael Somos, May 19 2007
Expansion of f(x*w, x/w) in powers of x where w is a primitive cube root of unity and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089801.
a(n) = (-1)^n * A089810(n). - Michael Somos, Jan 20 2012
For n > 0, a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(2-4*sin(floor(sqrt(n))*Pi/3)^2). - Mikael Aaltonen, Jan 17 2015
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024

A192540 G.f.: A(x) = Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (-x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 255, 960, 3707, 14597, 58382, 236522, 968597, 4003061, 16674858, 69936760, 295092057, 1251747436, 5334958079, 22834290248, 98108081192, 422986894605, 1829443421394, 7935301625600, 34510975557383, 150456011512671, 657415433062780
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2011

Keywords

Comments

Related q-series: Sum_{n>=0} (-q)^(n*(n+1)/2) = q^(-1/8)*eta(q)*eta(q^4)/eta(q^2) is a g.f. of A106459.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 + ...
The g.f. A = A(x) satisfies the following relations:
(1) A = x/(1 - A - A^3 + A^6 + A^10 - A^15 - A^21 + A^28 + A^36 + ...).
(2) A = x/((1-A)*(1+A^2)* (1-A^2)*(1+A^4)* (1-A^3)*(1+A^6)* (1-A^4)*(1+A^8)*...).
(3) A = x/((1-A)*(1-A^4)* (1-A^3)*(1-A^8)* (1-A^5)*(1-A^12)* (1-A^7)*(1-A^16)*...).
(4) A = x*(1+A)/(1-A^2)* (1+A^3)/(1-A^4)* (1+A^5)/(1-A^6) * (1+A^7)/(1-A^8)*...
(5) A = x*(1-A^2)/(1-A)* (1-A^6)/(1-A^2)* (1-A^10)/(1-A^3)* (1-A^14)/(1-A^4)*...
(6) A = x*exp(A/(1-A) - A^2/(2*(1+A^2)) + A^3/(3*(1-A^3)) - A^4/(4*(1+A^4)) + ...).
(7) A = x*exp(A + A^2/2 + 4*A^3/3 + 5*A^4/4 + 6*A^5/5 +...+ A113184(n)*A^n/n + ...).
		

Crossrefs

Programs

  • Maple
    nmax:=27: with(gfun): f := proc(x): x*add((-x)^(n*(n+1)/2),n=0..nmax) end: S:=series(f(x),x,nmax): g:= seriestoseries(S,'revogf'): seq(coeftayl (g,x=0,n),n=1..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*EllipticTheta[2, 0, Sqrt[-x]] / (2*(-x)^(1/8)), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Aug 17 2015 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 8*(s/Sqrt[2*Pi*(77 - 8*(-s)^(7/8) *s*(Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-s]] / r))])} /. FindRoot[{2*r == -(-s)^(7/8)*EllipticTheta[2, 0, Sqrt[-s]], 2*(-s)^(11/8)*Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-s]] == 7*r}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
  • PARI
    {a(n)=polcoeff(serreverse(x*sum(m=0,sqrtint(2*n)+1,(-x)^(m*(m+1)/2)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n,(1 - A^m)*(1 + A^(2*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n\2,(1 - A^(2*m-1))*(1 - A^(4*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n\2,(1 + A^(2*m-1))/(1 - A^(2*m)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n,(1 - A^(4*m-2))/(1 - A^m+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, -(-A+x*O(x^n))^m/(1+(-A)^m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=if(n<1,0,(1/n)*polcoeff(x/prod(k=1,n,(1-x^k)*(1+x^(2*k)+x*O(x^n)))^n,n))}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*exp(sum(m=1,n, A^m*sumdiv(m,d,(-1)^(m-d)*d)/m)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = x/[Sum_{n>=0} (-A(x))^(n*(n+1)/2)].
(2) A(x) = x/[Product_{n>=1} (1 - A(x)^n)*(1 + A(x)^(2*n))].
(3) A(x) = x/[Product_{n>=1} (1 - A(x)^(2*n-1))*(1 - A(x)^(4*n))].
(4) A(x) = x* Product_{n>=1} (1 + A(x)^(2*n-1))/(1 - A(x)^(2*n)).
(5) A(x) = x* Product_{n>=1} (1 - A(x)^(4*n-2))/(1 - A(x)^n).
(6) A(x) = x* exp( Sum_{n>=1} -(-A(x))^n/(n*(1 + (-A(x))^n)) ).
(7) A(x) = x* exp( Sum_{n>=1} A(x)^n*Sum_{d|n} (-1)^(n-d)*d/n ).
a(n) = [x^n] (1/n)*x/[Product_{k>=1} (1 - x^k)*(1 + x^(2*k))]^n for n >= 1.
a(n) ~ c * d^n / n^(3/2), where d = 4.6257905683677649210878404538251898489748116820946869227688637924996..., c = 0.1001072494040204029591345793571534412084516176488795... . - Vaclav Kotesovec, Aug 17 2015

A215597 Expansion of psi(-x) * f(-x)^3 in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -4, 3, 4, -2, 0, -11, 4, 0, 12, 10, -12, -7, -4, 0, -12, 16, 0, 6, 0, 9, 8, -10, 0, -18, -20, 0, 20, -14, 12, 11, 24, 0, 0, -22, 0, 16, -20, -6, -12, 0, 0, -3, 4, 0, -20, 48, 0, 14, 28, 0, -40, 0, 0, 0, -8, -33, -4, -26, 0, 30, 28, 0, 0, 2, 12, -16, 20, 0
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 4*x + 3*x^2 + 4*x^3 - 2*x^4 - 11*x^6 + 4*x^7 + 12*x^9 + 10*x^10 + ...
q - 4*q^5 + 3*q^9 + 4*q^13 - 2*q^17 - 11*q^25 + 4*q^29 + 12*q^37 + 10*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    A215597[n_] := SeriesCoefficient[(QPochhammer[x]^4 * QPochhammer[x^4])/ QPochhammer[x^2], {x, 0, n}]; Table[A215597[n], {n, 0, 50}] (* G. C. Greubel, Oct 01 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^4 + A) / eta(x^2 + A), n))}

Formula

Expansion of q^(-1/4) * eta(q)^4 * eta(q^4) / eta(q^2) in powers of q.
Euler transform of period 4 sequence [ -4, -3, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(19/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215596.
a(n) = (-1)^floor( n/2 ) * b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-p)^(e/2) if p == 3 (mod 4),
Convolution of A106459 and A010816.

A374080 Expansion of Product_{k>=1} (1 - x^(4*k-1)) * (1 - x^(4*k)).

Original entry on oeis.org

1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, -1, 0, 1, 0, -1, -1, 0, 0, -1, -1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, -1, -1, 1, 1, 0, 0, 1, 2, -1, -1, 0, 1, 0, -2, 0, 2, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -2, 0, 1, -1, -2, 1, 2, 0, -2, -1, 2, 0, -2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(4 k - 1)) (1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[DivisorSum[k, # &, Or[Mod[#, 4] == 0, Mod[#, 4] == 3] &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

A374081 Expansion of Product_{k>=1} (1 - x^(4*k-3)) * (1 - x^(4*k)).

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 2, -1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 1, 1, 0, -2, 1, 1, -2, 0, 2, 0, -1, 0, 1, 0, -1, 0, 2, -1, -2, 1, 1, -1, -1, 1, 2, -2, -1, 2, 0, -2, 0, 2, 0, -2, 0, 2, -1, -2, 1, 2, -1, -2, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(4 k - 3)) (1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[DivisorSum[k, # &, Or[Mod[#, 4] == 0, Mod[#, 4] == 1] &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

A287325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2 + j^2).

Original entry on oeis.org

1, 1, -2, 1, -1, 0, 1, -1, -1, 0, 1, -1, 0, 0, 2, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -2, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1,   1, ...
  -2,  -1,  -1,  -1,  -1,  -1, ...
   0,  -1,   0,   0,   0,   0, ...
   0,   0,  -1,   0,   0,   0, ...
   2,   0,   0,  -1,   0,   0, ...
   0,   1,   0,   0,  -1,   0, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i x^(k i (i - 1)/2 + i^2), {i, -n, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[(1 - x^((k + 2) i)) (1 - x^((k + 2) i - 1)) (1 - x^((k + 2) i - k - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(2 + k) QPochhammer[1/x, x^(2 + k)] QPochhammer[x^(-1 - k), x^(2 + k)] QPochhammer[x^(2 + k), x^(2 + k)])/((-1 + x) (-1 + x^(1 + k))), {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column 0: Sum_{j=-inf..inf} (-1)^j*x^A000290(j) = Product_{i>=1} (1 + x^i)/(1 - x^i) (convolution inverse of A015128).
G.f. of column 1: Sum_{j=-inf..inf} (-1)^j*x^A000326(j) = Product_{i>=1} (1 - x^i) (convolution inverse of A000041).
G.f. of column 2: Sum_{j=-inf..inf} (-1)^j*x^A000384(j) = Product_{i>=1} (1 - x^(2*i))/(1 + x^(2*i-1)) (convolution inverse of A006950).
G.f. of column 3: Sum_{j=-inf..inf} (-1)^j*x^A000566(j) = Product_{i>=1} (1 - x^(5*i))*(1 - x^(5*i-1))*(1 - x^(5*i-4)) (convolution inverse of A036820).
G.f. of column 4: Sum_{j=-inf..inf} (-1)^j*x^A000567(j) = Product_{i>=1} (1 - x^(6*i))*(1 - x^(6*i-1))*(1 - x^(6*i-5)) (convolution inverse of A195848).
G.f. of column 5: Sum_{j=-inf..inf} (-1)^j*x^A001106(j) = Product_{i>=1} (1 - x^(7*i))*(1 - x^(7*i-1))*(1 - x^(7*i-6)) (convolution inverse of A195849).
G.f. of column 6: Sum_{j=-inf..inf} (-1)^j*x^A001107(j) = Product_{i>=1} (1 - x^(8*i))*(1 - x^(8*i-1))*(1 - x^(8*i-7)) (convolution inverse of A195850).
G.f. of column 7: Sum_{j=-inf..inf} (-1)^j*x^A051682(j) = Product_{i>=1} (1 - x^(9*i))*(1 - x^(9*i-1))*(1 - x^(9*i-8)) (convolution inverse of A195851).
G.f. of column 8: Sum_{j=-inf..inf} (-1)^j*x^A051624(j) = Product_{i>=1} (1 - x^(10*i))*(1 - x^(10*i-1))*(1 - x^(10*i-9)) (convolution inverse of A195852).
G.f. of column 9: Sum_{j=-inf..inf} (-1)^j*x^A051865(j) = Product_{i>=1} (1 - x^(11*i))*(1 - x^(11*i-1))*(1 - x^(11*i-10)) (convolution inverse of A196933).
G.f. of column k: Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2+j^2) = Product_{i>=1} (1 - x^((k+2)*i))*(1 - x^((k+2)*i-1))*(1 - x^((k+2)*i-k-1)).

A336766 The number of partitions of n into an even number of parts, each part occurring at most five times, minus the number of partitions of n into an odd number of parts, each part occurring at most five times.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 0, 0, 2, -1, 1, -1, 1, -1, 1, -1, 2, -2, 1, -2, 2, -2, 1, -2, 3, -3, 2, -2, 3, -3, 3, -3, 4, -4, 3, -4, 5, -4, 4, -4, 6, -5, 5, -6, 6, -7, 6, -6, 8, -8, 7, -8, 9, -9, 8, -9, 11, -11, 10, -11, 12, -12, 11, -13, 15, -15, 14, -15, 17, -17, 16, -17
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 04 2020

Keywords

Examples

			There are 10 partitions of 6 where parts occur at most five times: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, and so a(6) = 0.
		

Crossrefs

Formula

G.f.: Product_{n>0} ((1-q^(6*n))/(1+q^n)).

A336767 The number of partitions of n into an even number of parts, each part occurring at most seven times, minus the number of partitions of n into an odd number of parts, each part occurring at most seven times.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 1, -1, 2, -1, 2, -2, 2, -3, 2, -2, 3, -3, 3, -4, 4, -4, 4, -5, 5, -6, 6, -6, 7, -7, 7, -8, 9, -9, 10, -10, 11, -12, 13, -13, 14, -15, 15, -17, 18, -18, 20, -21, 22, -23, 24, -25, 27, -29, 30, -32, 33, -35, 37, -39, 40, -43, 45, -47, 50
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 04 2020

Keywords

Crossrefs

Formula

G.f.: Product_{n>0} ((1-q^(8*n))/(1+q^n)).
Showing 1-10 of 10 results.