cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A033431 a(n) = 2*n^3.

Original entry on oeis.org

0, 2, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842
Offset: 0

Views

Author

Keywords

Comments

Also the largest determinant of a 3 X 3 matrix with entries from {0..n}. - Jud McCranie, Aug 12 2001
4*a(n) is a perfect cube.
The positive terms comprise the principal diagonal of the convolution array A213821. - Clark Kimberling, Jul 04 2012
Volume of a pyramid (square base) with side n and height 6*n. - Wesley Ivan Hurt, Aug 25 2014

Crossrefs

Programs

Formula

G.f.: 2*x*(1 + 4*x + x^2) / (1 - x)^4. - R. J. Mathar, Feb 04 2011
a(n) = 2*A000578(n). - Omar E. Pol, May 14 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Aug 25 2014
a(n) = A002378(n)^2 - A002378(n^2). - Bruno Berselli, Oct 20 2016
E.g.f.: 2*x*(1 + 3*x + x^2)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = zeta(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/8. (End)

A244725 a(n) = 5*n^3.

Original entry on oeis.org

0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Programs

  • Magma
    [5*n^3: n in [0..40]];
    
  • Magma
    I:=[0,5,40,135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
  • PARI
    a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A332822 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 2 (mod 3).

Original entry on oeis.org

3, 4, 7, 10, 13, 18, 19, 22, 24, 25, 29, 32, 34, 37, 42, 43, 45, 46, 53, 55, 56, 60, 61, 62, 71, 78, 79, 80, 81, 82, 85, 89, 94, 98, 99, 101, 104, 105, 107, 108, 113, 114, 115, 118, 121, 131, 132, 134, 139, 140, 144, 146, 150, 151, 152, 153, 155, 163, 166, 173, 174, 176, 181, 182, 187, 189, 192, 193, 194, 195, 199, 200, 204
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, A332821 and this sequence.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332821. This sequence has the primes with even indexes, those in A031215.
The terms are the even numbers in A332820 halved. The terms are also the numbers m such that 5m is in A332820, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332821, and so on for alternate primes: 7, 13, 19, 29 etc.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, we get the same set of numbers as we get from halving the even terms of this sequence, and A332821 consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332820, which consists exactly of those numbers. The numbers that are one fifth of the terms that are multiples of 5 constitute A332821, and for larger primes, an alternating pattern applies as described in the previous paragraph.
The product of any 2 terms of this sequence is in A332821, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332821, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of terms valued -1 in A332823; equivalently, numbers in row 3k-1 of A277905 for some k >= 1.
Subsequences: intersection of A026478 and A066207, A031215 (prime terms), A033430\{0}, A117642\{0}, A169604, A244727\{0}, A244729\{0}, A338910 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 204, Mod[Total@ #, 3] == 2 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332822(n) =  { my(f = factor(n)); (2==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332821(k) : k >= 1} U {A003961(A332821(k)) : k >= 1}.
{a(n) : n >= 1} = {A332821(k)^2 : k >= 1} U {A331590(2, A332821(k)) : k >= 1}.

A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0

Views

Author

Ralf Stephan, Dec 24 2013

Keywords

Examples

			Array starts:
1,  2,   3,    5,     8,     13,    21,   34, 55, 89,...    (A000045)
2,  8,  24,   80,   256,    832,  2688, 8704,...   (A063727, A085449)
3, 18,  81,  405,  1944,   9477, 45927,...         (A122069, A099012)
4, 32, 192, 1280,  8192,  53248,...                         (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
		

Programs

  • PARI
    T(n,k)=n^k*fibonacci(k)
    
  • PARI
    T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)

Formula

G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.

A171607 Expressible as A*B^A in a nontrivial way.

Original entry on oeis.org

8, 18, 24, 32, 50, 64, 72, 81, 98, 128, 160, 162, 192, 200, 242, 288, 324, 338, 375, 384, 392, 450, 512, 578, 648, 722, 800, 882, 896, 968, 1024, 1029, 1058, 1152, 1215, 1250, 1352, 1458, 1536, 1568, 1682, 1800, 1922, 2048, 2178, 2187, 2312, 2450, 2500, 2592
Offset: 1

Views

Author

Robert Munafo, Dec 12 2009

Keywords

Examples

			8=2*2^2. 24=3*2^3. 375=3*5^3.
		

Crossrefs

Cf. A171606. Union of the "KN^K" sequences A001105, A117642, A141046, ... or of the "NK^N" sequences A036289, A036290, A018215, A036291, ... but omitting the trivial initial terms.

Programs

  • PARI
    is(n)=if(n<8, return(0)); for(a=2,logint(n\2,2), if(n%a==0 && ispower(n/a,a), return(1))); 0 \\ Charles R Greathouse IV, Feb 19 2017
    
  • PARI
    list(lim)=my(v=List()); if(lim<8,return([])); for(a=2,logint(lim\2,2), for(b=2,sqrtnint(lim\a,a), listput(v,a*b^a))); Set(v) \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = 2n^2 - O(n^(5/3)). - Charles R Greathouse IV, Feb 19 2017

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A027903 a(n) = n*(n + 1)*(3*n + 1).

Original entry on oeis.org

0, 8, 42, 120, 260, 480, 798, 1232, 1800, 2520, 3410, 4488, 5772, 7280, 9030, 11040, 13328, 15912, 18810, 22040, 25620, 29568, 33902, 38640, 43800, 49400, 55458, 61992, 69020, 76560, 84630, 93248, 102432, 112200, 122570, 133560, 145188, 157472, 170430
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Dec 02 2013: (Start)
a(n) = n*(n + 1)*(3*n + 1).
a(n) = 3*n^3 + 4*n^2 + n.
a(n) = A002378(n) * A016777(n).
a(n) = A049451(n) * A001477(n+1).
a(n) = A001477(n) * A000567(n-1).
a(n) = A001477(n) * A001477(n+1) * A016777(n).
a(n) = A117642(n) + A016742(n) + A001477(n). (End)
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=1} 1/a(n) = 4 - sqrt(3)*Pi/4 - 9*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/2 + 2*log(2) - 4. (End)
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: 2*x*(4 + 5*x)/(1 - x)^4.
E.g.f.: x*(8 + 13*x + 3*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A251781 Numbers whose square is the sum of two distinct positive cubes.

Original entry on oeis.org

3, 24, 81, 98, 168, 192, 228, 312, 375, 525, 588, 648, 671, 784, 847, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1536, 1824, 2187, 2496, 2646, 2888, 3000, 3993, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5368, 6156, 6272, 6292, 6371, 6591, 6696, 6776, 6877, 8112
Offset: 1

Views

Author

Daniel Arribas, Dec 08 2014

Keywords

Comments

This list contains A117642 (if n=3*k^3, then n^2 = 9*k^6 = 8*k^6 + k^6 = (2*k^2)^3 + (k^2)^3). (Old comment rewritten as suggested by Michel Marcus, Dec 10 2014.)
Subsequence of A050801 and A217248. - Wolfdieter Lang, Jan 04 2015

Examples

			3^2 = 1^3 + 2^3; 24^2 = 4^3 + 8^3.
		

Crossrefs

Cf. A024670, A117642, A050801, A217248, A099426 (coprime positive cubes).

Programs

  • Python
    def aupto(limit):
      c = [i**3 for i in range(1, int(limit**(2/3))+2) if i**3 <= limit**2]
      cc = [c1 + c2 for i, c1 in enumerate(c) for c2 in c[i+1:]]
      return sorted([i for i in range(1, limit+1) if i*i in cc])
    print(aupto(8122)) # Michael S. Branicky, Mar 24 2021
  • Sage
    L = []
    for k in range(1,10^3):
        for l in range(k + 1,10^3):
            if is_square(k**3+l**3):
                L.append(sqrt(k**3+l**3))
    

A267983 Integers n such that n^3 = (x^2 + y^2 + z^2) / 3 where x > y > z > 0, is soluble.

Original entry on oeis.org

3, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94
Offset: 1

Views

Author

Altug Alkan, Jan 23 2016

Keywords

Comments

Motivation was this simple question: What are the cubes that are the averages of 3 nonzero distinct squares?
Corresponding cubes are 27, 216, 343, 729, 1000, 1331, 1728, 2744, 3375, 4913, 5832, 6859, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 27000, ...
Complement of this sequence for positive integers is 1, 2, 4, 5, 8, 13, 16, 20, 21, 29, 32, 37, 45, 52, 53, 61, 64, 69, 77, ...
The positive cubes that are not the averages of 3 nonzero distinct squares are 1, 8, 64, 125, 512, 2197, 4096, 8000, 9261, 24389, 32768, 50653, 91125, ...

Examples

			3 is a term since 3^3 is the average of 1^2, 4^2, 8^2. 3^3 = (1^2 + 4^2 + 8^2) / 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 94, Resolve[Exists[{x, y, z}, Reduce[#^3 == (x^2 + y^2 + z^2)/3, {x, y, z}, Integers], x > y > z > 0]] &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    isA004432(n) = for(x=1, sqrtint(n\3), for(y=x+1, sqrtint((n-1-x^2)\2), issquare(n-x^2-y^2) && return(1)));
    for(n=1, 1e2, if(isA004432(3*n^3), print1(n, ", ")));

A294315 a(n) = 3*n^3 + n^2.

Original entry on oeis.org

0, 4, 28, 90, 208, 400, 684, 1078, 1600, 2268, 3100, 4114, 5328, 6760, 8428, 10350, 12544, 15028, 17820, 20938, 24400, 28224, 32428, 37030, 42048, 47500, 53404, 59778, 66640, 74008, 81900, 90334, 99328, 108900, 119068, 129850, 141264, 153328, 166060, 179478
Offset: 0

Views

Author

Jason Morgan, Oct 28 2017

Keywords

Comments

All terms are even.

Examples

			a(3)=90 because 3*3^3 + 3^2 = 3*27 + 9 = 90.
		

Crossrefs

Programs

  • GAP
    A294315:=List([0..10^4],n -> 3 *n^3 + n^2 ); # Muniru A Asiru, Dec 11 2017
  • Mathematica
    Array[3 #^3 + #^2 &, 40, 0] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 4, 28, 90}, 40] (* or *)
    CoefficientList[Series[2 x (2 + 6 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* Michael De Vlieger, Dec 12 2017 *)
  • PARI
    a(n) = 3*n^3 + n^2;
    
  • PARI
    concat(0, Vec(2*x*(2 + 6*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 11 2017
    

Formula

a(n) = 3*n^3 + n^2.
a(n) = A117642(n) + A000290(n).
a(n) = 2*A036659(n).
From Colin Barker, Dec 11 2017: (Start)
G.f.: 2*x*(2 + 6*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + sqrt(3)*Pi/2 + 9*log(3)/2 - 9.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - sqrt(3)*Pi - 6*log(2) + 9. (End)
Showing 1-10 of 12 results. Next