cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A143978 a(n) = floor(2*n*(n+1)/3).

Original entry on oeis.org

1, 4, 8, 13, 20, 28, 37, 48, 60, 73, 88, 104, 121, 140, 160, 181, 204, 228, 253, 280, 308, 337, 368, 400, 433, 468, 504, 541, 580, 620, 661, 704, 748, 793, 840, 888, 937, 988, 1040, 1093, 1148, 1204, 1261, 1320, 1380, 1441, 1504, 1568, 1633, 1700, 1768, 1837
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Second diagonal of array A143979, which counts certain unit squares in a lattice. First diagonal: A030511.
Convolution of A042965 with A000012, convolution of A131534 with A000027, and convolution of A106510 with A000217. - L. Edson Jeffery, Jan 24 2015
From Miquel A. Fiol, Aug 31 2024: (Start)
a(n+1) is the maximum number N of vertices of a circulant digraph with steps +-s1, s2, and diameter n.
Depending on the value of n, the following table shows the values of N, s1, and s2:
n | 3*r | 3*r-1 | 3*r-2 |
N | 6*r^2+6*r+1 | 6*r^2+2*r | 6*r^2-2*r |
s1 | 1 | r | r |
s2 | 6*r+3 | 3*r+1 | 3*r-1 |
(End)

Crossrefs

Cf. A000217, A030511, A042965 (first differences), A106510, A131534, A143979.

Programs

  • Maple
    A143978:= n-> (6*n*(n+1) -1 + `mod`(n+2,3) - `mod`(n+1,3))/9;
    seq(A143978(n), n=1..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Table[(6*n^2 +6*n -1  + Mod[n+2, 3] - Mod[n+1, 3])/9, {n, 60}] (* G. C. Greubel, May 27 2020 *)
    Table[Floor[2n (n+1)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,4,8,13,20},60] (* Harvey P. Dale, Aug 12 2025 *)

Formula

From R. J. Mathar, Oct 05 2009: (Start)
G.f.: x*(1 + x)^2/((1 + x + x^2)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5). (End)
a(n) = Sum_{k=1..(n+1)} A042965(k). - Klaus Purath, May 23 2020
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + (6*n^2 + 6*n -1))/9.
a(n) = (JacobiSymbol(n+1, 3) - JacobiSymbol(n, 3) + (6*n^2 + 6*n -1))/9.
a(n) = (A102283(n+1) - A102283(n) + A103115(n+1))/9
a(n) = (A131713(n) + A103115(n+1))/9. (End)
Sum_{n>=1} 1/a(n) = 3/2 + (tan(Pi/(2*sqrt(3)))-1)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6*x^2 + 12*x - 1) + cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Apr 05 2023

A056530 Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.

Original entry on oeis.org

1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.

Crossrefs

We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,3,7,13},60] (* Harvey P. Dale, Oct 19 2022 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020

A166587 A signed variant of the Motzkin numbers.

Original entry on oeis.org

1, 1, -1, 2, -4, 9, -21, 51, -127, 323, -835, 2188, -5798, 15511, -41835, 113634, -310572, 853467, -2356779, 6536382, -18199284, 50852019, -142547559, 400763223, -1129760415, 3192727797, -9043402501, 25669818476, -73007772802
Offset: 0

Views

Author

Paul Barry, Oct 17 2009

Keywords

Comments

Hankel transform is A131713. Binomial transform is A166588.
[a(n+1)] = [1,-1,2,-4,9,...] is the inverse binomial transform of A126120. - Philippe Deléham, Nov 29 2009

Examples

			G.f. = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 21*x^6 + 51*x^7 - 127*x^8 + ...
		

Programs

  • Maple
    f:= gfun:-rectoproc({3*n*a(n)+(-3-2*n)*a(1+n)+(-3-n)*a(n+2)=0,a(0) = 1, a(1) = 1}, a(n),remember):
    map(f, [$0..100]); # Robert Israel, May 17 2016
    with(PolynomialTools): CoefficientList(convert(taylor((1 + 3*x - sqrt(1 + 2*x - 3*x^2))/2/x, x = 0, 33), polynom), x); # Taras Goy, Aug 07 2017
  • Mathematica
    CoefficientList[Series[(1 + 3*t - Sqrt[1 + 2*t - 3*t^2])/(2 t), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016 *)

Formula

G.f.: (1+3x-sqrt(1+2x-3x^2))/(2x); (1+3x)/(1+2x-x^2/(1+x-x^2/(1+x-x^2/(1+x-x^2/(1+...))))) (continued fraction).
a(n) = 0^n + Sum_{k=0..n} binomial(n-1, k-1)*(-3)^(n-k)*A000108(k).
G.f.: (1+3*x-sqrt(1+2*x-3*x^2))/(2x) = (3-1/G(0))/2 ; G(k) = 1+2*x/(1-x/(1-x/(1+2*x/(1+x/(2+x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
Conjecture: n*(n+1)*a(n) + n*(n+1)*a(n-1) - (5*n-3)*(n-2)*a(n-2) + 3*(n-2)*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
G.f. G(x) satisfies (3 x^2 - 2 x^2 - x) G'(x) - (x+1) G(x) + 3 x + 1 = 0, from which follows 3*n*a(n) + (-3-2*n)*a(1+n) + (-3-n)*a(n+2) = 0 as well as Mathar's conjecture. - Robert Israel, May 17 2016
E.g.f.: 1 + Integral (exp(-x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020

A240438 Greatest minimal difference between numbers of adjacent cells in a regular hexagonal honeycomb of order n with cells numbered from 1 through the total number of cells, the order n corresponding to the number of cells on one side of the honeycomb.

Original entry on oeis.org

0, 1, 5, 11, 18, 28, 40, 53, 69, 87, 106, 128, 152, 177, 205, 235, 266, 300, 336, 373, 413, 455, 498, 544, 592, 641, 693, 747, 802, 860, 920, 981, 1045, 1111, 1178, 1248, 1320, 1393, 1469, 1547, 1626, 1708, 1792, 1877, 1965, 2055, 2146, 2240, 2336, 2433, 2533, 2635
Offset: 1

Views

Author

Jörg Zurkirchen, Apr 05 2014

Keywords

Comments

Difference table of a(n), with a(0)=0 and offset=0:
0, 0, 1, 5, 11, 18, 28, 40, 53, 69, ...
0, 1, 4, 6, 7, 10, 12, 13, 16, 18, ... = A047234(n+1)
1, 3, 2, 1, 3, 2, 1, 3, 2, 1, ... = A130784
2, -1, -1, 2, -1, -1, 2, -1, -1, 2, ... = -A131713(n+1)
-3, 0, 3, -3, 0, 3, -3, 0, 3, -3; ... = A099838(n+4)
3, 3, -6, 3, 3, -6, 3, 3, -6, 3, ...
0, -9, 9, 0, -9, 9, 0, -9, 9, 0, ...
-9, 18, -9, -9, 18, -9, -9, 18, -9, -9, ...
First column: see A057682. - Paul Curtz, Nov 11 2014
Diameter of the chamber graph Γ(Alt(2n+1)). Definition of this graph:
Each vertex v is a sequence (v[1],v[2],...,v[n]) of length n, where each v[i] is a 2-subset of {1,2,...,2n+1} and v[i] and v[j] are disjoint unless i=j.
Vertices u and v are connected iff either:
u and v are identical except for their first elements u[1] and v[1], or
u and v are identical except for some i for which u[i]=v[i+1] and v[i]=u[i+1] - Tim Crinion, 17 Feb 2019

Examples

			For n = 3 an example of a honeycomb with the greatest minimal difference of a(3) = 5 is:
.         __
.      __/ 7\__
.   __/15\__/13\__
.  / 4\__/ 2\__/ 1\
.  \__/10\__/ 8\__/
.  /18\__/16\__/14\
.  \__/ 5\__/ 3\__/
.  /12\__/11\__/ 9\
.  \__/19\__/17\__/
.     \__/ 6\__/
.        \__/
.
		

References

  • 22ème Championnat des jeux mathématiques et logiques - 1/4 de finale individuels 2008, problème 18, «Les ruches d’Abella»

Crossrefs

Programs

  • Magma
    [n*(n-1)-Floor((n+1)/3): n in [1..60]]; // Vincenzo Librandi, Nov 12 2014
  • Maple
    A240438:=n->n*(n-1)-floor((n+1)/3); seq(A240438(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[n (n - 1) - Floor[(n + 1)/3], {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[x (x + 1) (2 x + 1) / ((1 - x)^3 (x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Nov 12 2014 *)
    LinearRecurrence[{2, -1, 1, -2, 1},{0, 1, 5, 11, 18},52] (* Ray Chandler, Sep 24 2015 *)

Formula

a(n) = n*(n-1)-floor((n+1)/3).
G.f.: -x^2*(x+1)*(2*x+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Apr 08 2014
a(n+3) = a(n) + 6*n+5. - Paul Curtz, Nov 11 2014
a(n) = n^2 - (A042965(n+1)=0, 1, 3, 4, ...). - Paul Curtz, Nov 11 2014
a(n+1) = a(n) + A047234(n+1). - Paul Curtz, Nov 11 2014

A152731 a(n) + a(n+1) + a(n+2) = n^6, a(1)=a(2)=0.

Original entry on oeis.org

0, 0, 1, 63, 665, 3368, 11592, 31696, 74361, 156087, 300993, 542920, 927648, 1515416, 2383745, 3630375, 5376505, 7770336, 10990728, 15251160, 20803993, 27944847, 37017281, 48417776, 62600832, 80084368, 101455425, 127375983
Offset: 1

Views

Author

Keywords

Comments

0 + 0 + 1 = 1^6; 0 + 1 + 63 = 2^6; ...

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(1+x)*(x^4+56*x^3+246*x^2+56*x+1)/((1-x)^7*(1 +x+ x^2)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^6-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    LinearRecurrence[{6, -15, 21, -21, 21, -21, 15, -6, 1}, {0, 0, 1, 63, 665, 3368, 11592, 31696, 74361}, 5000]
    CoefficientList[Series[x^2*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)),{x, 0, 5000}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(x^3*(1+x)*(x^4+56*x^3 +246*x^2 +56*x+1)/((1-x)^7*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
    

Formula

From R. J. Mathar, Dec 12 2008: (Start)
a(n) = -26*n/3 + 20*n^3/3 - 5*n^2 + 7/3 - 2*n^5 + n^6/3 + 5*n^4/3 - 7*A131713(n)/3.
G.f.: x^3*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)). (End)

A166588 Partial sums of A097331; binomial transform of A166587.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 5, 10, 10, 24, 24, 66, 66, 198, 198, 627, 627, 2057, 2057, 6919, 6919, 23715, 23715, 82501, 82501, 290513, 290513, 1033413, 1033413, 3707853, 3707853, 13402698, 13402698, 48760368, 48760368, 178405158, 178405158, 656043858
Offset: 0

Views

Author

Paul Barry, Oct 17 2009

Keywords

Comments

Hankel transform is A131713. The Hankel transform of the sequence 1,1,2,2,... is A128017(n+3). A155587 doubled.

Programs

  • Mathematica
    CoefficientList[Series[(1+2*x-Sqrt[1-4*x^2])/(2*x*(1-x)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: (1+2x-sqrt(1-4x^2))/(2x(1-x))=((1+x^2*c(x^2))/(1-x)-1)/x, c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(n,k)*A166587(k).
Conjecture: (-n-1)*a(n) + (n+1)*a(n-1) + 4*(n-2)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
a(n) ~ 2^(n+1/2) * (3-(-1)^n) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014

A301696 Partial sums of A219529.

Original entry on oeis.org

1, 6, 17, 33, 54, 81, 113, 150, 193, 241, 294, 353, 417, 486, 561, 641, 726, 817, 913, 1014, 1121, 1233, 1350, 1473, 1601, 1734, 1873, 2017, 2166, 2321, 2481, 2646, 2817, 2993, 3174, 3361, 3553, 3750, 3953, 4161, 4374, 4593, 4817, 5046, 5281, 5521, 5766
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Crossrefs

Cf. A219529.

Programs

  • Maple
    A301696:= n-> (8*(3*n*(n+1) +1) + `mod`(n+2, 3) - `mod`(n+1, 3))/9;
    seq(A301696(n), n=0..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Table[(Mod[n+2, 3] - Mod[n+1, 3] + 8*(3*n*(n+1) +1))/9, {n,0,60}] (* G. C. Greubel, May 27 2020 *)
  • PARI
    Vec((1 + x)^4 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    
  • Sage
    [(24*n*(n+1)+8 + (n+2)%3 - (n+1)%3 )/9 for n in (0..60)] # G. C. Greubel, May 27 2020

Formula

From Colin Barker, Mar 26 2018: (Start)
G.f.: (1 + x)^4 / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. (End)
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + 8*(3*n*(n+1) +1))/9.
a(n) = ( A131713(n) + 8*A028896(n) + 8 )/9. (End)

A301775 Number of odd chordless cycles in the (2n+1)-web graph.

Original entry on oeis.org

0, 12, 30, 74, 200, 522, 1362, 3572, 9350, 24474, 64080, 167762, 439202, 1149852, 3010350, 7881194, 20633240, 54018522, 141422322, 370248452, 969323030, 2537720634, 6643838880, 17393796002, 45537549122, 119218851372, 312119004990, 817138163594, 2139295485800
Offset: 1

Views

Author

Eric W. Weisstein, Mar 26 2018

Keywords

Crossrefs

Cf. A301774.

Programs

  • Magma
    I:=[0,12,30,74,200]; [n le 5 select I[n] else  2*Self(n-1)+Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 27 2018
  • Mathematica
    Rest @ CoefficientList[Series[2 x^2*(6 + 3 x + x^2 - x^3)/((1 - 3 x + x^2) (1 + x + x^2)), {x, 0, 29}], x] (* Michael De Vlieger, Mar 26 2018 *)
    Join[{0}, LinearRecurrence[{2, 1, 2, -1}, {12, 30, 74, 200}, 30]] (* Vincenzo Librandi, Mar 27 2018 *)
    Join[{0}, Table[LucasL[2 n + 1] + Cos[2 n Pi/3] - Sqrt[3] Sin[2 n Pi/3], {n, 2, 20}]] (* Eric W. Weisstein, Mar 27 2018 *)
  • PARI
    Vec(2*(6 + 3*x + x^2 - x^3)/((1 - 3*x + x^2)*(1 + x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 26 2018
    

Formula

From Andrew Howroyd, Mar 26 2018: (Start)
a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) for n > 5.
G.f.: 2*x^2*(6 + 3*x + x^2 - x^3)/((1 - 3*x + x^2)*(1 + x + x^2)).
(End)
a(n) = A002878(n) + cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3) for n > 1. - Eric W. Weisstein, Mar 27 2018
a(n) = A002878(n) + A131713(n), n>1. - R. J. Mathar, Apr 17 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Mar 26 2018

A008806 Expansion of (1+x^3)/((1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 6, 6, 9, 10, 12, 14, 17, 18, 22, 24, 27, 30, 34, 36, 41, 44, 48, 52, 57, 60, 66, 70, 75, 80, 86, 90, 97, 102, 108, 114, 121, 126, 134, 140, 147, 154, 162, 168, 177, 184, 192, 200, 209, 216, 226, 234, 243, 252, 262, 270, 281, 290, 300, 310, 321
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    a:=[1,0,2,2,3,4];; for n in [7..70] do a[n]:=a[n-1]+a[n-2]-a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^3)/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^3)/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^3)/((1-x^2)^2*(1-x^3)), {x,0,70}], x] (* or *) LinearRecurrence[{1,1,0,-1,-1,1}, {1,0,2,2,3,4}, 70] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    Vec((1+x^3)/((1-x^2)^2*(1-x^3)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012; modified by G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008806_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^3)/((1-x^2)^2*(1-x^3))).list()
    A008806_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

From R. J. Mathar, Nov 08 2010: (Start)
a(n) = (16*A131713(n) +29 +24*n +6*n^2 +27*(-1)^n)/72.
G.f.: (1 -x +x^2)/( (1+x)*(1+x+x^2)*(1-x)^3 ). (End)
a(n) = floor((6*n^2+24*n+61+27*(-1)^n)/72). - Tani Akinari, Jul 24 2013

Extensions

Terms a(52) onward added by G. C. Greubel, Sep 12 2019

A147534 a(n) is congruent to (1,1,2) mod 3.

Original entry on oeis.org

1, 1, 2, 4, 4, 5, 7, 7, 8, 10, 10, 11, 13, 13, 14, 16, 16, 17, 19, 19, 20, 22, 22, 23, 25, 25, 26, 28, 28, 29, 31, 31, 32, 34, 34, 35, 37, 37, 38, 40, 40, 41, 43, 43, 44, 46, 46, 47, 49, 49, 50, 52, 52, 53, 55, 55, 56, 58, 58, 59, 61, 61, 62, 64, 64, 65, 67, 67, 68, 70, 70, 71
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 06 2008

Keywords

Crossrefs

Cf. A004396 for a(n) congruent to (0, 1, 1) mod 2.
Cf. A131713.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-3)+3: n in [1..70]]; // Vincenzo Librandi, Jul 25 2016
  • Maple
    a:=n->add(chrem( [n,j], [1,3] ), j=1..n): seq(a(n)+1, n=-1..70); # Zerinvary Lajos, Apr 08 2009
  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,1,2,4},80] (* Harvey P. Dale, Dec 09 2012 *)

Formula

a(n) = a(n-3)+3 = n-2/3-A131713(n)/3. G.f.: x*(1+x^2+x^3)/((1-x)^2*(1+x+x^2)). [R. J. Mathar, Nov 07 2008]
a(1)=1, a(2)=1, a(3)=2, a(4)=4, a(n)=a(n-1)+a(n-3)-a(n-4) for n>4. - Harvey P. Dale, Dec 09 2012
a(n) = (3*n - 2 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jul 24 2016
a(n) = 1 + floor((n-1)/3) + floor(2*(n-1)/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) = n - sign((n-1) mod 3). - Wesley Ivan Hurt, Sep 25 2017
Showing 1-10 of 14 results. Next