cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A088878 Prime numbers p such that 3p - 2 is a prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

Comments

Indices of semiprime octagonal numbers. - Jonathan Vos Post, Feb 16 2006
Daughter primes of order 1. - Artur Jasinski, Dec 12 2007
A010051(3*a(n)-2) = 1. - Reinhard Zumkeller, Jul 02 2015

Examples

			For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
		

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Haskell
    a088878 n = a088878_list !! (n-1)
    a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[3*p-2],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Prime[Range[150]],PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
  • PARI
    list(lim)=select(p->isprime(3*p-2),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Extensions

Corrected and extended by Ray Chandler, Dec 27 2003
Entry revised by N. J. A. Sloane, Nov 28 2006, Jul 08 2010

A034936 Numbers k such that 3*k + 4 is prime.

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 19, 21, 23, 25, 31, 33, 35, 41, 45, 49, 51, 53, 59, 63, 65, 69, 73, 75, 79, 89, 91, 93, 101, 103, 109, 111, 115, 121, 123, 125, 131, 135, 139, 143, 145, 151, 153, 161, 165, 173, 179, 181, 189, 191, 199, 201, 203, 205, 209, 213, 219, 223, 229
Offset: 1

Views

Author

Keywords

Comments

Related to hyperperfect numbers of a certain form.

Crossrefs

Cf. A038536 and A002476.
A002476 gives primes, A091178 gives prime index.
a(n) = A024892(n) - 1 = 2*A024899(n) - 1.
a(n) = A153183(n) - 2 = A107303(n) - 3.

Programs

A024892 Numbers k such that 3*k+1 is prime.

Original entry on oeis.org

2, 4, 6, 10, 12, 14, 20, 22, 24, 26, 32, 34, 36, 42, 46, 50, 52, 54, 60, 64, 66, 70, 74, 76, 80, 90, 92, 94, 102, 104, 110, 112, 116, 122, 124, 126, 132, 136, 140, 144, 146, 152, 154, 162, 166, 174, 180, 182, 190, 192, 200, 202, 204, 206, 210, 214, 220, 224, 230, 236, 242, 244, 246
Offset: 1

Views

Author

Keywords

Comments

Every prime (with the exception of 3) can be expressed as 3*k+1 or 3*k-1. - César Aguilera, Apr 13 2013
The associated prime A002476(n) has a unique representation as x^2 + x*y - 2*y^2 = (x + 2*y)*(x-y) with positive integers, namely (x(n), y(n)) = (a(n) + 1, a(n)). See the N. J. A. Sloane, May 31 2014, comment on A002476. - Wolfdieter Lang, Feb 09 2016
For all elements of this sequence there are no (x,y) positive integers such that a(n) = 3*x*y + x + y or a(n) = 3*x*y - x - y. - Pedro Caceres, Jan 28 2021

Crossrefs

Cf. A002476 (associated primes), A091178 (gives prime index).

Programs

Formula

a(n) = (A002476(n) - 1)/3. See the name.
a(n) = 2*A024899(n) = A034936(n) + 1.
a(n) = A153183(n) - 1 = A107303(n) - 2.

A157834 Numbers n such that 3n-2 and 3n+2 are both prime.

Original entry on oeis.org

3, 5, 7, 13, 15, 23, 27, 33, 35, 37, 43, 55, 65, 75, 77, 93, 103, 105, 117, 127, 133, 147, 153, 155, 163, 167, 205, 215, 225, 247, 253, 257, 275, 285, 287, 293, 295, 303, 313, 323, 337, 363, 365, 405, 427, 433, 435, 475, 477, 483, 495, 497, 517
Offset: 1

Views

Author

Kyle D. Balliet, Mar 07 2009

Keywords

Comments

Barycenter of cousin primes (A029708; see also A029710, A023200, A046132), divided by 3. When p>3 and p+4 both are prime, then p = 1 (mod 6) and p+2 = 3 (mod 6). - M. F. Hasler, Jan 14 2013

Examples

			15*3 +/- 2 = 43,47 (both prime).
		

Crossrefs

Intersection of A024893 and A153183.

Programs

  • Magma
    [n: n in [1..1000]|IsPrime(3*n-2)and IsPrime(3*n+2)] // Vincenzo Librandi, Dec 13 2010
  • Maple
    select(t -> isprime(3*t+2) and isprime(3*t-2), [seq(t,t=3..1000,2)]); # Robert Israel, May 28 2017
  • Mathematica
    Select[Range[600],AllTrue[3#+{2,-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)

Formula

Intersection of A024893 and A153183.
a(n) = A029708(n)/3. - Zak Seidov, Aug 07 2009
a(n) = A056956(n)*2+1 = (A029710(n)+2)/3 = (A023200(n+1)+2)/3. - M. F. Hasler, Jan 14 2013

A228121 Numbers n such that 3n - 4 is prime.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 15, 17, 19, 21, 25, 29, 31, 35, 37, 39, 45, 47, 51, 57, 59, 61, 65, 67, 77, 79, 81, 85, 87, 89, 91, 95, 99, 105, 107, 117, 119, 121, 129, 131, 135, 141, 145, 149, 151, 155, 157, 161, 165, 169, 171, 175, 187, 189, 191, 197, 199, 201, 207, 215, 217, 219, 221, 227, 229
Offset: 1

Views

Author

Irina Gerasimova, Aug 11 2013

Keywords

Comments

Primes in a(n): 2, 3, 5, 7, 11, 17, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 107, 131, 149, 151, 157, 191, 197, 199, 227, 229, 241, 271, 277, 281,...

Examples

			For n = 15, 3*15 - 4 = 41 is prime.
		

Crossrefs

Programs

Formula

a(n) = A024893(n) + 2. - Michael B. Porter, Aug 11 2013

A107303 Numbers k such that (3*k - 5) is prime.

Original entry on oeis.org

4, 6, 8, 12, 14, 16, 22, 24, 26, 28, 34, 36, 38, 44, 48, 52, 54, 56, 62, 66, 68, 72, 76, 78, 82, 92, 94, 96, 104, 106, 112, 114, 118, 124, 126, 128, 134, 138, 142, 146, 148, 154, 156, 164, 168, 176, 182, 184, 192, 194, 202, 204, 206, 208, 212, 216, 222, 226, 232
Offset: 1

Views

Author

Parthasarathy Nambi, May 20 2005

Keywords

Comments

3 and 5 are twin primes.

Examples

			If k=4, then 3*k - 5 = 7 (prime).
If k=28, then 3*k - 5 = 79 (prime).
		

Crossrefs

Cf. A088879.
Equals A153183(n) + 1; also A024892(n) + 2; also A034936(n) + 3;

Programs

A153184 Numbers n such that 3*n-2 is not prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

One more than the associated value in A153309. - R. J. Mathar, Jan 05 2011

Examples

			Distribution of the odd terms > a(1) in the following triangular array:
*;
*,9;
*,*,17;
*,*,*,*;
*,19,*,*,41;
*,*,31,*,*,57;
*,*,*,*,*,*,*;
*,29,*,*,63,*,*,97;
*,*,45,*,*,83,*,*,121;
*,*, *,*,*,*, *,*, *, *;
*,39,*,*,85,*,*,131,*,*,177;
*,*,59,*,*,109,*,*,159,*,*,209; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h + 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Programs

Formula

a(n) ~ n. - Charles R Greathouse IV, Oct 26 2015

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010

A129926 Semiprimes s such that 3*s - 2 is a prime.

Original entry on oeis.org

15, 21, 25, 33, 35, 51, 55, 65, 77, 91, 93, 95, 111, 123, 133, 141, 145, 155, 183, 201, 203, 205, 215, 221, 237, 247, 253, 287, 295, 303, 323, 341, 355, 365, 377, 391, 411, 413, 417, 427, 485, 497, 511, 515, 517, 527, 533, 537, 543, 553, 565, 581, 583, 597
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 06 2007

Keywords

Comments

Indices of 3-almost prime octagonal numbers.

Crossrefs

Intersection of A153183 and A001358 (semiprimes).

Programs

  • Maple
    isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true ; else false ; end ; end: isA129926 := proc(n) if isA001358(n) then isprime(3*n-2) ; else false ; fi ; end: for n from 1 to 1000 do if isA129926(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 07 2007
  • Mathematica
    Select[Range[600],PrimeOmega[#]==2&&PrimeQ[3#-2]&] (* James C. McMahon, Feb 02 2025 *)
  • PARI
    list(lim)=my(v=List(),n); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), n=p*q; if(isprime(3*n-2), listput(v,n)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

More terms from R. J. Mathar, Jun 07 2007

A268475 Numbers n such that n^3 +/- 2 and 3*n +/- 2 are all prime.

Original entry on oeis.org

435, 555, 2415, 31635, 38025, 44835, 80625, 88335, 97455, 98505, 99435, 124335, 142065, 145095, 165375, 176055, 204765, 246435, 279225, 293475, 310095, 315555, 332085, 344745, 348735, 376935, 392415, 443595, 462105, 467385, 482355, 581415, 609555, 626775, 636015
Offset: 1

Views

Author

K. D. Bajpai, Feb 05 2016

Keywords

Comments

All the terms in this sequence are congruent to 0 (mod 5).
Each term in this sequence yields two sets of cousin prime pairs i.e., for n = 435 -> {82312877, 82312873} and {1307, 1303}.
All terms are congruent to 15 mod 30. - Robert Israel, Feb 05 2016

Examples

			435 is in the sequence because 435^3 + - 2 =  82312877, 82312873; 3*435 + - 2 = 1307, 1303 are all prime.
555 is in the sequence because 555^3 + - 2 =  170953877, 170953873; 3*555 + - 2 = 1667, 1663 are all prime.
		

Crossrefs

Programs

  • Magma
    [n : n in [1..1e5] | IsPrime(n^3 + 2) and IsPrime(n^3 - 2) and IsPrime(3*n + 2) and IsPrime(3*n - 2)];
  • Maple
    select(n -> andmap(isprime, [n^3 + 2, n^3 - 2, 3*n + 2, 3*n - 2]), [seq(p, p=1.. 10^6)]);
  • Mathematica
    Select[Range[1000000], PrimeQ[#^3 + 2] && PrimeQ[#^3 - 2] && PrimeQ[3 # + 2] && PrimeQ[3 # - 2] &]
  • PARI
    for(n = 1,1e5, if( isprime(n^3 + 2) && isprime(n^3 - 2) && isprime(3*n + 2) && isprime(3*n - 2), print1(n ", ")))
    

A294064 Numbers k such that 2*k - 3, 2*k + 3, 3*k - 2, 3*k + 2 are primes.

Original entry on oeis.org

5, 7, 13, 35, 43, 55, 77, 127, 133, 155, 167, 253, 287, 295, 365, 475, 497, 533, 595, 713, 1007, 1177, 1483, 1805, 2323, 2575, 2723, 2927, 3107, 3415, 3487, 3823, 4145, 4213, 4367, 4565, 4717, 4927, 4963, 5125, 5215, 5363, 5417, 5587, 5627, 5795, 6133, 6587, 6797
Offset: 1

Views

Author

Dimitris Valianatos, Oct 22 2017

Keywords

Comments

The common numbers of A098090, A067076, A153183, A024893.
Conjecture: The Sum_{n>=1} 1/a(n) = 0.57... converges.
Note that the sum of the 4 primes that are obtained is 10 times the original term: (2*k - 3) + (2*k + 3) + (3*k - 2) + (3*k + 2) = 10*k.
From Robert G. Wilson v, Nov 19 2017: (Start)
Number of terms less than 10^m: 2, 7, 20, 55, 189, 919, 4863, 28218, 174469, ..., ;
Number of prime terms less than 10^m: 2, 4, 6, 12, 39, 140, 558, 2755, 14804, ..., .
All terms are == {5, 7, 13, 17, 23, 25} (mod 30).
(End)

Examples

			5 is in the sequence because 2*5-3 = 7, 2*5+3 = 13, 3*5-2 = 13, 3*5+2 = 17 and the tetrad [7, 13, 13, 17] are all prime numbers.
7 is in the sequence because 2*7-3 = 11, 2*7+3 = 17, 3*7-2 = 19, 3*7+2 = 23 and the tetrad [11, 17, 19, 23] are all prime numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Function[k, AllTrue[Flatten@ Map[#1 k + {-1, 1} #2 & @@ # &, {#, Reverse@ #}] &@ {2, 3}, PrimeQ]]] (* Michael De Vlieger, Oct 22 2017 *)
  • PARI
    {
    for(n=1,10000,
        if(isprime(2*n-3)&&isprime(2*n+3)&&isprime(3*n-2)&&isprime(3*n+2),
           print1(n", ")
          )
       )
    }
Showing 1-10 of 10 results.