A088878
Prime numbers p such that 3p - 2 is a prime.
Original entry on oeis.org
3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
Offset: 1
For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
Cf.
A000040,
A000567,
A001222,
A001358,
A091179,
A091180,
A091181,
A136019,
A136020,
A153183,
A153184.
-
a088878 n = a088878_list !! (n-1)
a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
-- Reinhard Zumkeller, Jul 02 2015
-
[ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
-
lst={};Do[p=Prime[n];If[PrimeQ[3*p-2],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
Select[Prime[Range[150]],PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
-
list(lim)=select(p->isprime(3*p-2),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
A034936
Numbers k such that 3*k + 4 is prime.
Original entry on oeis.org
1, 3, 5, 9, 11, 13, 19, 21, 23, 25, 31, 33, 35, 41, 45, 49, 51, 53, 59, 63, 65, 69, 73, 75, 79, 89, 91, 93, 101, 103, 109, 111, 115, 121, 123, 125, 131, 135, 139, 143, 145, 151, 153, 161, 165, 173, 179, 181, 189, 191, 199, 201, 203, 205, 209, 213, 219, 223, 229
Offset: 1
A024892
Numbers k such that 3*k+1 is prime.
Original entry on oeis.org
2, 4, 6, 10, 12, 14, 20, 22, 24, 26, 32, 34, 36, 42, 46, 50, 52, 54, 60, 64, 66, 70, 74, 76, 80, 90, 92, 94, 102, 104, 110, 112, 116, 122, 124, 126, 132, 136, 140, 144, 146, 152, 154, 162, 166, 174, 180, 182, 190, 192, 200, 202, 204, 206, 210, 214, 220, 224, 230, 236, 242, 244, 246
Offset: 1
A157834
Numbers n such that 3n-2 and 3n+2 are both prime.
Original entry on oeis.org
3, 5, 7, 13, 15, 23, 27, 33, 35, 37, 43, 55, 65, 75, 77, 93, 103, 105, 117, 127, 133, 147, 153, 155, 163, 167, 205, 215, 225, 247, 253, 257, 275, 285, 287, 293, 295, 303, 313, 323, 337, 363, 365, 405, 427, 433, 435, 475, 477, 483, 495, 497, 517
Offset: 1
15*3 +/- 2 = 43,47 (both prime).
-
[n: n in [1..1000]|IsPrime(3*n-2)and IsPrime(3*n+2)] // Vincenzo Librandi, Dec 13 2010
-
select(t -> isprime(3*t+2) and isprime(3*t-2), [seq(t,t=3..1000,2)]); # Robert Israel, May 28 2017
-
Select[Range[600],AllTrue[3#+{2,-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)
A228121
Numbers n such that 3n - 4 is prime.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 15, 17, 19, 21, 25, 29, 31, 35, 37, 39, 45, 47, 51, 57, 59, 61, 65, 67, 77, 79, 81, 85, 87, 89, 91, 95, 99, 105, 107, 117, 119, 121, 129, 131, 135, 141, 145, 149, 151, 155, 157, 161, 165, 169, 171, 175, 187, 189, 191, 197, 199, 201, 207, 215, 217, 219, 221, 227, 229
Offset: 1
For n = 15, 3*15 - 4 = 41 is prime.
A107303
Numbers k such that (3*k - 5) is prime.
Original entry on oeis.org
4, 6, 8, 12, 14, 16, 22, 24, 26, 28, 34, 36, 38, 44, 48, 52, 54, 56, 62, 66, 68, 72, 76, 78, 82, 92, 94, 96, 104, 106, 112, 114, 118, 124, 126, 128, 134, 138, 142, 146, 148, 154, 156, 164, 168, 176, 182, 184, 192, 194, 202, 204, 206, 208, 212, 216, 222, 226, 232
Offset: 1
If k=4, then 3*k - 5 = 7 (prime).
If k=28, then 3*k - 5 = 79 (prime).
A153184
Numbers n such that 3*n-2 is not prime.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94, 96, 97, 98, 99, 100
Offset: 1
Distribution of the odd terms > a(1) in the following triangular array:
*;
*,9;
*,*,17;
*,*,*,*;
*,19,*,*,41;
*,*,31,*,*,57;
*,*,*,*,*,*,*;
*,29,*,*,63,*,*,97;
*,*,45,*,*,83,*,*,121;
*,*, *,*,*,*, *,*, *, *;
*,39,*,*,85,*,*,131,*,*,177;
*,*,59,*,*,109,*,*,159,*,*,209; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h + 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..120] | not IsPrime(3*n - 2)]; // Vincenzo Librandi, Jan 12 2013
-
lst={};Do[If[ !PrimeQ[3*n-2],AppendTo[lst,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
Select[Range[0, 100], !PrimeQ[3 # - 2] &] (* Vincenzo Librandi, Jan 12 2013 *)
-
is(n)=!isprime(3*n-2) \\ Charles R Greathouse IV, Oct 26 2015
A129926
Semiprimes s such that 3*s - 2 is a prime.
Original entry on oeis.org
15, 21, 25, 33, 35, 51, 55, 65, 77, 91, 93, 95, 111, 123, 133, 141, 145, 155, 183, 201, 203, 205, 215, 221, 237, 247, 253, 287, 295, 303, 323, 341, 355, 365, 377, 391, 411, 413, 417, 427, 485, 497, 511, 515, 517, 527, 533, 537, 543, 553, 565, 581, 583, 597
Offset: 1
-
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true ; else false ; end ; end: isA129926 := proc(n) if isA001358(n) then isprime(3*n-2) ; else false ; fi ; end: for n from 1 to 1000 do if isA129926(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 07 2007
-
Select[Range[600],PrimeOmega[#]==2&&PrimeQ[3#-2]&] (* James C. McMahon, Feb 02 2025 *)
-
list(lim)=my(v=List(),n); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), n=p*q; if(isprime(3*n-2), listput(v,n)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017
A268475
Numbers n such that n^3 +/- 2 and 3*n +/- 2 are all prime.
Original entry on oeis.org
435, 555, 2415, 31635, 38025, 44835, 80625, 88335, 97455, 98505, 99435, 124335, 142065, 145095, 165375, 176055, 204765, 246435, 279225, 293475, 310095, 315555, 332085, 344745, 348735, 376935, 392415, 443595, 462105, 467385, 482355, 581415, 609555, 626775, 636015
Offset: 1
435 is in the sequence because 435^3 + - 2 = 82312877, 82312873; 3*435 + - 2 = 1307, 1303 are all prime.
555 is in the sequence because 555^3 + - 2 = 170953877, 170953873; 3*555 + - 2 = 1667, 1663 are all prime.
-
[n : n in [1..1e5] | IsPrime(n^3 + 2) and IsPrime(n^3 - 2) and IsPrime(3*n + 2) and IsPrime(3*n - 2)];
-
select(n -> andmap(isprime, [n^3 + 2, n^3 - 2, 3*n + 2, 3*n - 2]), [seq(p, p=1.. 10^6)]);
-
Select[Range[1000000], PrimeQ[#^3 + 2] && PrimeQ[#^3 - 2] && PrimeQ[3 # + 2] && PrimeQ[3 # - 2] &]
-
for(n = 1,1e5, if( isprime(n^3 + 2) && isprime(n^3 - 2) && isprime(3*n + 2) && isprime(3*n - 2), print1(n ", ")))
A294064
Numbers k such that 2*k - 3, 2*k + 3, 3*k - 2, 3*k + 2 are primes.
Original entry on oeis.org
5, 7, 13, 35, 43, 55, 77, 127, 133, 155, 167, 253, 287, 295, 365, 475, 497, 533, 595, 713, 1007, 1177, 1483, 1805, 2323, 2575, 2723, 2927, 3107, 3415, 3487, 3823, 4145, 4213, 4367, 4565, 4717, 4927, 4963, 5125, 5215, 5363, 5417, 5587, 5627, 5795, 6133, 6587, 6797
Offset: 1
5 is in the sequence because 2*5-3 = 7, 2*5+3 = 13, 3*5-2 = 13, 3*5+2 = 17 and the tetrad [7, 13, 13, 17] are all prime numbers.
7 is in the sequence because 2*7-3 = 11, 2*7+3 = 17, 3*7-2 = 19, 3*7+2 = 23 and the tetrad [11, 17, 19, 23] are all prime numbers.
-
Select[Range[10^4], Function[k, AllTrue[Flatten@ Map[#1 k + {-1, 1} #2 & @@ # &, {#, Reverse@ #}] &@ {2, 3}, PrimeQ]]] (* Michael De Vlieger, Oct 22 2017 *)
-
{
for(n=1,10000,
if(isprime(2*n-3)&&isprime(2*n+3)&&isprime(3*n-2)&&isprime(3*n+2),
print1(n", ")
)
)
}
Showing 1-10 of 10 results.
Comments