A173177
Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.
Original entry on oeis.org
2, 5, 8, 14, 17, 20, 29, 32, 35, 38, 47, 50, 53, 62, 68, 74, 77, 80, 89, 95, 98, 104, 110, 113, 119, 134, 137, 140, 152, 155, 164, 167, 173, 182, 185, 188, 197, 203, 209, 215, 218, 227, 230, 242, 248, 260, 269, 272, 284, 287, 299
Offset: 1
A002476
Primes of the form 6m + 1.
Original entry on oeis.org
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1
Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- C. Banderier, Calcul de (-3/p)
- Barry Brent, Finite Field Models of Polynomials Interpolating Fourier Coefficients of Modular Functions for Hecke Groups, Integers (2024) Vol. 24, Art. No. A18. See p. 13.
- F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 526.
- K. G. Reuschle, Tafeln complexer Primzahlen, Königl. Akademie der Wissenschaften, Berlin, 1875, p. 1.
- Neville Robbins, On the Infinitude of Primes of the Form 3k+1, Fib. Q., 43,1 (2005), 29-30.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Index to sequences related to decomposition of primes in quadratic fields
Cf.
A004611 (multiplicative closure).
-
Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
-
a002476 n = a002476_list !! (n-1)
a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
-- Reinhard Zumkeller, Jan 15 2013
-
(#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
-
[n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
-
a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
-
Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
-
select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
A024899
Numbers k such that 6*k + 1 is prime.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 21, 23, 25, 26, 27, 30, 32, 33, 35, 37, 38, 40, 45, 46, 47, 51, 52, 55, 56, 58, 61, 62, 63, 66, 68, 70, 72, 73, 76, 77, 81, 83, 87, 90, 91, 95, 96, 100, 101, 102, 103, 105, 107, 110, 112, 115, 118, 121, 122, 123, 125, 126, 128, 131, 135, 137
Offset: 1
A024892
Numbers k such that 3*k+1 is prime.
Original entry on oeis.org
2, 4, 6, 10, 12, 14, 20, 22, 24, 26, 32, 34, 36, 42, 46, 50, 52, 54, 60, 64, 66, 70, 74, 76, 80, 90, 92, 94, 102, 104, 110, 112, 116, 122, 124, 126, 132, 136, 140, 144, 146, 152, 154, 162, 166, 174, 180, 182, 190, 192, 200, 202, 204, 206, 210, 214, 220, 224, 230, 236, 242, 244, 246
Offset: 1
A089953
Numbers n such that 3*n+7 is prime.
Original entry on oeis.org
0, 2, 4, 8, 10, 12, 18, 20, 22, 24, 30, 32, 34, 40, 44, 48, 50, 52, 58, 62, 64, 68, 72, 74, 78, 88, 90, 92, 100, 102, 108, 110, 114, 120, 122, 124, 130, 134, 138, 142, 144, 150, 152, 160, 164, 172, 178, 180, 188, 190, 198, 200, 202, 204, 208, 212, 218, 222, 228
Offset: 1
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.
A107303
Numbers k such that (3*k - 5) is prime.
Original entry on oeis.org
4, 6, 8, 12, 14, 16, 22, 24, 26, 28, 34, 36, 38, 44, 48, 52, 54, 56, 62, 66, 68, 72, 76, 78, 82, 92, 94, 96, 104, 106, 112, 114, 118, 124, 126, 128, 134, 138, 142, 146, 148, 154, 156, 164, 168, 176, 182, 184, 192, 194, 202, 204, 206, 208, 212, 216, 222, 226, 232
Offset: 1
If k=4, then 3*k - 5 = 7 (prime).
If k=28, then 3*k - 5 = 79 (prime).
A023278
Primes that remain prime through 3 iterations of function f(x) = 3x + 4.
Original entry on oeis.org
23, 683, 1663, 2753, 3203, 6073, 6323, 7523, 8243, 9293, 9613, 15173, 19913, 21023, 21683, 25183, 26633, 29663, 34613, 34703, 39293, 41953, 43283, 45533, 52813, 59393, 62473, 65053, 66763, 71713, 71993, 81533, 81953, 84523, 87833, 103843, 104183
Offset: 1
-
[n: n in [1..150000] | IsPrime(n) and IsPrime(3*n+4) and IsPrime(9*n+16) and IsPrime(27*n+52)] // Vincenzo Librandi, Aug 04 2010
-
Select[Prime@ Range[10^4], Times @@ Boole@ PrimeQ@ Rest@ NestList[3 # + 4 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
-
is(n)=isprime(n) && isprime(3*n+4) && isprime(9*n+16) && isprime(27*n+52) \\ Charles R Greathouse IV, Sep 20 2016
A023308
Primes that remain prime through 4 iterations of the function f(x) = 3x + 4.
Original entry on oeis.org
3203, 21683, 34613, 52813, 103843, 116933, 117443, 165443, 172933, 193603, 195053, 213973, 226783, 321053, 322193, 357613, 360323, 362233, 363403, 368743, 472393, 474143, 496333, 518543, 528673, 569083, 571303, 631853, 654623, 714893, 758503
Offset: 1
-
Filtered([1..760000],n->IsPrime(n) and IsPrime(3*n+4) and IsPrime(9*n+16) and IsPrime(27*n+52) and IsPrime(81*n+160)); # Muniru A Asiru, Dec 07 2018
-
[n: n in [1..1000000] | IsPrime(n) and IsPrime(3*n+4) and IsPrime(9*n+16) and IsPrime(27*n+52) and IsPrime(81*n+160)] // Vincenzo Librandi, Aug 04 2010
-
select(n->isprime(n) and isprime(3*n+4) and isprime(9*n+16) and isprime(27*n+52) and isprime(81*n+160),[$1..760000]); # Muniru A Asiru, Dec 07 2018
-
Select[Prime[Range[10000]], Union[PrimeQ[NestList[(3# + 4 &), #, 4]]] == {True} &] (* Alonso del Arte, Nov 30 2018 *)
-
is(n) = my(x=3*n+4, i=0); while(1, if(!ispseudoprime(x), return(0), i++); if(i==4, return(1)); x=3*x+4)
forprime(p=1, 760000, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Dec 07 2018
A106068
Primes p such that 3p + 4 and 4p + 3 are primes.
Original entry on oeis.org
5, 11, 19, 31, 41, 59, 89, 109, 151, 179, 181, 229, 241, 331, 349, 389, 439, 509, 521, 599, 661, 719, 769, 839, 881, 929, 1019, 1039, 1129, 1229, 1291, 1409, 1451, 1481, 1549, 1669, 1741, 1759, 1801, 1811, 2111, 2131, 2539, 2621, 2671, 2699, 2819, 2879
Offset: 1
-
[p: p in PrimesUpTo(5000)|IsPrime(3*p+4) and IsPrime(4*p+3)] // Vincenzo Librandi, Jan 30 2011
-
Select[Prime[Range[450]], PrimeQ[4#+3]&&PrimeQ[3#+4]&]
-
isok(p) = isprime(p) && isprime(3*p+4) && isprime(4*p+3); \\ Michel Marcus, Oct 12 2018
A153282
Numbers k such that 3*k + 4 is not prime.
Original entry on oeis.org
0, 2, 4, 6, 7, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 29, 30, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 64, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1
Distribution of the odd terms in the following triangular array:
*;
*,7;
*,*,15;
*,*,*,*;
*,17.*,*,39;
*,*,29,*,*,55;
*,*, *,*,*,*, *;
*,27,*,*,61,*,*,95;
*,*,43,*,*,81,*,*,119;
*,*, *,*,*,*, *,*, *, *;
*,37,*,*,83,*,*,129,*,*,175;
*,*,57,*,*,107,*,*,157,*,*,207; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h - 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
Showing 1-10 of 14 results.
Comments