cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002476 Primes of the form 6m + 1.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
A039701(A049084(a(n))) = A134323(A049084(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2007
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024

Examples

			Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

For values of m see A024899. Primes of form 3n - 1 give A003627.
These are the primes arising in A024892, A024899, A034936.
A091178 gives prime index.
Subsequence of A016921 and of A050931.
Cf. A004611 (multiplicative closure).

Programs

  • GAP
    Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
  • Haskell
    a002476 n = a002476_list !! (n-1)
    a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • J
    (#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
    
  • Magma
    [n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A024899 Numbers k such that 6*k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 21, 23, 25, 26, 27, 30, 32, 33, 35, 37, 38, 40, 45, 46, 47, 51, 52, 55, 56, 58, 61, 62, 63, 66, 68, 70, 72, 73, 76, 77, 81, 83, 87, 90, 91, 95, 96, 100, 101, 102, 103, 105, 107, 110, 112, 115, 118, 121, 122, 123, 125, 126, 128, 131, 135, 137
Offset: 1

Views

Author

Keywords

Comments

For all elements of this sequence there are no (x,y) positive integers such that a(n)=6*x*y+x+y or a(n)=6*x*y-x-y. - Pedro Caceres, Apr 19 2019

Crossrefs

A002476 gives primes, A091178 gives prime index.
Complement of A046954 relative to A000027.

Programs

  • Magma
    [n: n in [0..200]| IsPrime(6*n+1)] // Vincenzo Librandi, Nov 20 2010
    
  • Maple
    a := [ ]: for n from 0 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[Range@ 140, PrimeQ[6 # + 1] &] (* Michael De Vlieger, Jan 23 2018 *)
  • PARI
    select(n->n%6==1,primes(100))\6 \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A024892(n)/2 = (A034936(n)+1)/2. - Ray Chandler, Dec 26 2003
a(n) = (A002476(n)-1)/6. - Zak Seidov, Aug 31 2016

A034936 Numbers k such that 3*k + 4 is prime.

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 19, 21, 23, 25, 31, 33, 35, 41, 45, 49, 51, 53, 59, 63, 65, 69, 73, 75, 79, 89, 91, 93, 101, 103, 109, 111, 115, 121, 123, 125, 131, 135, 139, 143, 145, 151, 153, 161, 165, 173, 179, 181, 189, 191, 199, 201, 203, 205, 209, 213, 219, 223, 229
Offset: 1

Views

Author

Keywords

Comments

Related to hyperperfect numbers of a certain form.

Crossrefs

Cf. A038536 and A002476.
A002476 gives primes, A091178 gives prime index.
a(n) = A024892(n) - 1 = 2*A024899(n) - 1.
a(n) = A153183(n) - 2 = A107303(n) - 3.

Programs

A091178 Numbers k such that k-th prime is of the form 6*m+1.

Original entry on oeis.org

4, 6, 8, 11, 12, 14, 18, 19, 21, 22, 25, 27, 29, 31, 34, 36, 37, 38, 42, 44, 46, 47, 48, 50, 53, 58, 59, 61, 63, 65, 67, 68, 70, 73, 74, 75, 78, 80, 82, 84, 85, 88, 90, 93, 95, 99, 100, 101, 105, 106, 110, 111, 112, 114, 115, 117, 121, 122, 125, 127, 129, 130
Offset: 1

Views

Author

Ray Chandler, Dec 26 2003

Keywords

Comments

A002476 indexed by A000040.
Also k for which prime(k) == 1 (mod 3). - Bruno Berselli, Mar 04 2016
Sequence A091177 (indices of primes of the form 3*k-1) is this sequence's complement in the positive integers without {2}. - M. F. Hasler, Sep 02 2016
The asymptotic density of this sequence is 1/2 (by Dirichlet's theorem). - Amiram Eldar, Feb 28 2021

Crossrefs

Cf. A000040, A002476 (primes of the form 6*m+1), A091177 (indices of primes of the form 3*k-1), A024892, A024899.

Programs

  • Mathematica
    Select[Range[200],IntegerQ[(Prime[#]-1)/6]&] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    isok(n) = !((prime(n)-1) % 6); \\ Michel Marcus, Mar 04 2016

Formula

a(n) = k such that A000040(k) = A002476(n).

Extensions

Definition edited by Zak Seidov, Oct 09 2014

A153183 Numbers k such that 3k-2 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 21, 23, 25, 27, 33, 35, 37, 43, 47, 51, 53, 55, 61, 65, 67, 71, 75, 77, 81, 91, 93, 95, 103, 105, 111, 113, 117, 123, 125, 127, 133, 137, 141, 145, 147, 153, 155, 163, 167, 175, 181, 183, 191, 193, 201, 203, 205, 207, 211, 215, 221, 225, 231
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Crossrefs

Cf. A153184 (complement)
Cf. A088878 (3p-2 is prime), A024892 (3*k+1 is prime).

Programs

Formula

a(n) = A024892(n)+1. - Klaus Brockhaus, Dec 21 2008

Extensions

More terms from Klaus Brockhaus, Dec 21 2008

A070847 Smallest prime == 1 mod (3n).

Original entry on oeis.org

7, 7, 19, 13, 31, 19, 43, 73, 109, 31, 67, 37, 79, 43, 181, 97, 103, 109, 229, 61, 127, 67, 139, 73, 151, 79, 163, 337, 349, 181, 373, 97, 199, 103, 211, 109, 223, 229, 937, 241, 739, 127, 1033, 397, 271, 139, 283, 433, 883, 151, 307, 157, 3181, 163, 331, 337
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Cf. A034694.
Cf. A024892 (n such that a(n)=3*n+1).
Cf. A002476.

Programs

  • Maple
    f:= proc(n) local k,d;
      if n::even then d:= 3*n else d:= 6*n fi;
      for k from 1 by d do if isprime(k) then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 19 2019
  • Mathematica
    a[n_] := Module[{k, d}, If[EvenQ[n], d = 3n, d = 6n]; For[k = 1, True, k += d, If[PrimeQ[k], Return[k]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 11 2020, after Maple *)
  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(3*n)>0,s++); print1(s,","))

Extensions

More terms from Benoit Cloitre, May 18 2002

A130800 Numbers k such that both 2k+1 and 3k+1 are primes.

Original entry on oeis.org

2, 6, 14, 20, 26, 36, 50, 54, 74, 90, 116, 140, 146, 174, 200, 204, 210, 224, 230, 270, 284, 306, 330, 336, 350, 354, 384, 404, 410, 426, 440, 476, 510, 516, 554, 564, 596, 600, 624, 644, 650, 704, 714, 726, 740, 746, 834, 846, 894, 930, 944, 950, 1026, 1040
Offset: 1

Views

Author

Max Alekseyev, Jul 18 2007

Keywords

Comments

Also: k such that A033570(k) is semiprime. All terms are congruent to 0 or 2 modulo 6. - M. F. Hasler, Dec 13 2019

Crossrefs

Intersection of A005097 and A024892. - M. F. Hasler, Dec 13 2019
Cf. A033570; A255584: semiprimes of the form (4*n+1)*(6*n+1).

Programs

  • Magma
    [n: n in [0..500] | IsPrime(2*n+1) and IsPrime(3*n+1)]; // Vincenzo Librandi, Nov 23 2010
    
  • Mathematica
    Select[Range[1100],AllTrue[{2,3}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 17 2016 *)
  • PARI
    select( is_A130800(n)=isprime(2*n+1)&&isprime(3*n+1), [1..1111]) \\ M. F. Hasler, Dec 13 2019

Formula

a(n) = 2*A255607(n). - M. F. Hasler, Dec 13 2019

Extensions

More terms from Vincenzo Librandi, Mar 26 2010

A112772 Semiprimes of the form 6n+2.

Original entry on oeis.org

14, 26, 38, 62, 74, 86, 122, 134, 146, 158, 194, 206, 218, 254, 278, 302, 314, 326, 362, 386, 398, 422, 446, 458, 482, 542, 554, 566, 614, 626, 662, 674, 698, 734, 746, 758, 794, 818, 842, 866, 878, 914, 926, 974, 998, 1046, 1082, 1094, 1142, 1154, 1202, 1214
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018

Crossrefs

Subsequence of A051222. - Bernd C. Kellner, Mar 21 2018
Cf. A027642.

Programs

  • Magma
    IsSemiprime:= func; [s: n in [0..210] | IsSemiprime(s) where s is 6*n + 2]; // Vincenzo Librandi, Sep 22 2012
    
  • Mathematica
    Select[6Range[0,300]+2,PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 04 2011 *)
  • PARI
    2*select(n->n%3==1,primes(100)) \\ Charles R Greathouse IV, Sep 22 2012

Formula

a(n) = 2 * A002476(n) = 6 * A024892(n) + 2.
denominator(Bernoulli(a(n))) = 6. - Bernd C. Kellner, Mar 21 2018

A089953 Numbers n such that 3*n+7 is prime.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 18, 20, 22, 24, 30, 32, 34, 40, 44, 48, 50, 52, 58, 62, 64, 68, 72, 74, 78, 88, 90, 92, 100, 102, 108, 110, 114, 120, 122, 124, 130, 134, 138, 142, 144, 150, 152, 160, 164, 172, 178, 180, 188, 190, 198, 200, 202, 204, 208, 212, 218, 222, 228
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 12 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A002476 gives primes, A034936, A024892, A024899.

Programs

Formula

a(n) = A034936(n)-1 = A024892(n)-2 = 2*A024899(n)-2.

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A107303 Numbers k such that (3*k - 5) is prime.

Original entry on oeis.org

4, 6, 8, 12, 14, 16, 22, 24, 26, 28, 34, 36, 38, 44, 48, 52, 54, 56, 62, 66, 68, 72, 76, 78, 82, 92, 94, 96, 104, 106, 112, 114, 118, 124, 126, 128, 134, 138, 142, 146, 148, 154, 156, 164, 168, 176, 182, 184, 192, 194, 202, 204, 206, 208, 212, 216, 222, 226, 232
Offset: 1

Views

Author

Parthasarathy Nambi, May 20 2005

Keywords

Comments

3 and 5 are twin primes.

Examples

			If k=4, then 3*k - 5 = 7 (prime).
If k=28, then 3*k - 5 = 79 (prime).
		

Crossrefs

Cf. A088879.
Equals A153183(n) + 1; also A024892(n) + 2; also A034936(n) + 3;

Programs

Showing 1-10 of 13 results. Next