cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A162862 Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime.

Original entry on oeis.org

1, 5, 17, 20, 21, 30, 53, 60, 86, 137, 172, 195, 212, 224, 229, 258, 268, 272, 319, 339, 355, 365, 366, 389, 390, 398, 414, 467, 480, 504, 534, 539, 543, 567, 592, 619, 626, 654, 709, 735, 756, 766, 770, 778, 787, 806, 812, 874, 943, 973, 1003, 1036, 1040
Offset: 1

Views

Author

Keywords

Comments

The associated primes are in A162861.
Numbers n such that Phi(11,n) is prime, where Phi(11,n) = (n^11 - 1)/(n - 1) is the eleventh cyclotomic polynomial. - Jianing Song, Sep 05 2018

Crossrefs

Programs

Formula

A000040 INTERSECT A060885.

A060072 a(n) = (n^(n-1) - 1)/(n-1) for n>1, a(1) = 0.

Original entry on oeis.org

0, 1, 4, 21, 156, 1555, 19608, 299593, 5380840, 111111111, 2593742460, 67546215517, 1941507093540, 61054982558011, 2085209001813616, 76861433640456465, 3041324492229179280, 128583032925805678351, 5784852794328402307380, 275941052631578947368421
Offset: 1

Views

Author

Henry Bottomley, Feb 21 2001

Keywords

Comments

(n-1)-digit repunits in base n written in decimal.

Examples

			a(10)=111111111; i.e., just nine 1's (converted from base 10 to decimal).
		

Crossrefs

Cf. other sequences of generalized repunits, such as A053696, A055129, A031973, A125598, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [0] cat [ (n^(n-1) -1)/(n-1) : n in [2..25]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Join[{0},Array[(#^(#-1)-1)/(#-1)&,20,2]] (* Harvey P. Dale, Jun 04 2013 *)
  • PARI
    a(n) = if (n==1, 0, (n^(n - 1) - 1)/(n - 1)); \\ Harry J. Smith, Jul 01 2009
    
  • SageMath
    [0]+[(n^(n-1) -1)/(n-1) for n in (2..25)] # G. C. Greubel, Aug 15 2022

Formula

a(n+1) = Sum_{k=1..n} n^(k-1)*C(n, k). - Olivier Gérard, Jun 26 2001 [Corrected by Mathew Englander, Dec 15 2020]
a(n) = Sum_{j=2..n} n^(n-j). - Zerinvary Lajos, Sep 11 2006
a(n+1) = A125118(n,n). - Reinhard Zumkeller, Nov 21 2006
a(n) = Integral_{x=1/n..1} 1/x^n dx. - Francesco Daddi, Aug 01 2011
a(n) = A037205(n-1)/(n-1) = A060073(n)*(n-1) = A023037(n) - A000169(n).
a(n) = [x^n] x^2/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
a(n) = 1 + A228275(n, n-2) for n >= 2. - Mathew Englander, Dec 14 2020

Extensions

Name edited by Michel Marcus, Dec 14 2020

A245393 Primes of the form m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.

Original entry on oeis.org

683, 51828151, 57154490053, 128011456717, 39700406579747, 60867245726761, 135938684703251, 2681921038140191, 825977153711699903, 2411248431216834661, 38518333422551932951, 161352769633614478921, 4679818035765747188623, 10926823630072049689441, 13158906479414390795167
Offset: 1

Views

Author

K. D. Bajpai, Jul 21 2014

Keywords

Comments

All the terms in this sequence are primes, but none are congruent to 9 mod 10.
The value of first few m's corresponding to primes listed in data section are: 2, 6, 12, 13, 23, 24, 26, 35, 62, 69, 91, 105, 147, 160, 163, 183, 185, 193... 469, 491, 492 .....

Examples

			m:=2: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 683, which is prime, hence appears in the sequence.
m:=6: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 51828151, which is prime, hence appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1, {n, 200}], PrimeQ]
  • PARI
    for(n=1,10^3,s=sum(i=0,10,(-n)^i);if(ispseudoprime(s),print1(s,", "))) \\ Derek Orr, Jul 30 2014

A286301 Primes of the form p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.

Original entry on oeis.org

12207031, 2141993519227, 178250690949465223, 2346320474383711003267, 398341412240537151131351, 79545183674814239059370551, 494424256962371823779424877, 8271964541879648991904246901, 32142180034067960734115528951, 91264002187709396686868598317
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 05 2017

Keywords

Examples

			Prime number 12207031 = Sum_{i=0..10} 5^i is the first in the sequence since 23 divides 88573 = Sum_{i=0..10} 3^i as well as 2047 = Sum_{i=0..10} 2^i.
		

Crossrefs

Subsequence of A060885, A162861 and A193574.

Programs

  • Mathematica
    a286301[n_] := Select[Map[(Prime[#]^11-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a286301[150] (* data *)

A125598 a(n) = ((n+1)^(n-1) - 1)/n.

Original entry on oeis.org

0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1

Views

Author

Alexander Adamchuk, Nov 26 2006

Keywords

Comments

Odd prime p divides a(p-2).
a(n) is prime for n = {3,4,6,74, ...}; prime terms are {5, 31, 2801, ...}.
a(n) is the (n-1)-th generalized repunit in base (n+1). For example, a(5) = 259 which is 1111 in base 6. - Mathew Englander, Oct 20 2020

Crossrefs

Cf. A000272 (n^(n-2)), A125599.
Cf. other sequences of generalized repunits, such as A125118, A053696, A055129, A060072, A031973, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
  • Mathematica
    Table[((n+1)^(n-1)-1)/n, {n,25}]
  • Sage
    [gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
    

Formula

a(n) = ((n+1)^(n-1) - 1)/n.
a(n) = (A000272(n+1) - 1)/n.
a(2k-1)/(2k+1) = A125599(k) for k>0.
From Mathew Englander, Dec 17 2020: (Start)
a(n) = (A060072(n+1) - A083069(n-1))/2.
For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k.
For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End)

A198244 Primes of the form k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 where k is nonprime.

Original entry on oeis.org

11, 10778947368421, 17513875027111, 610851724137931, 614910264406779661, 22390512687494871811, 22793803793211153712637, 79905927161140977116221, 184251916941751188170917, 319465039747605973452001, 1311848376806967295019263, 1918542715220370688851293
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2012

Keywords

Comments

Subsequence of A060885.
From Bernard Schott, Nov 01 2019: (Start)
These are the primes associated with the terms k of A308238.
A162861 = A286301 Union {this sequence}.
The numbers of this sequence R_11 = 11111111111_k with k > 1 are Brazilian primes, so belong to A085104. (End)

Examples

			10778947368421 is in the sequence since 10778947368421 = 20^10 + 20^9 + 20^8 + 20^7 + 20^6 + 20^5 + 20^4 + 20^3 + 20^2 + 20 + 1, 20 is not prime, and 10778947368421 is prime.
		

Crossrefs

Similar to A185632 (k^2+ ...), A193366 (k^4+ ...), A194194 (k^6+ ...).

Programs

  • Magma
    [a: n in [0..500] | not IsPrime(n) and IsPrime(a) where a is (n^10+n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1)]; // Vincenzo Librandi, Nov 09 2014
    
  • Maple
    f:= proc(n)
    local p,j;
    if isprime(n) then return NULL fi;
    p:= add(n^j,j=0..10);
    if isprime(p) then p else NULL fi
    end proc:
    map(f, [$1..1000]); # Robert Israel, Nov 19 2014
  • PARI
    forcomposite(n=0,10^3,my(t=sum(k=0,10,n^k));if(isprime(t),print1(t,", "))); \\ Joerg Arndt, Nov 10 2014
  • Python
    from sympy import isprime
    A198244_list, m = [], [3628800, -15966720, 28828800, -27442800, 14707440, -4379760, 665808, -42240, 682, 0, 1]
    for n in range(1,10**4):
        for i in range(10):
            m[i+1]+= m[i]
        if not isprime(n) and isprime(m[-1]):
            A198244_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

{A060885(A018252(n)) which are in A000040}.

Extensions

a(5)-a(6) from Robert G. Wilson v, Dec 21 2012
a(7) from Michael B. Porter, Dec 27 2012
Corrected terms a(6)-a(7) and added terms by Chai Wah Wu, Nov 09 2014

A245427 Primes of the form n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

43, 547, 909091, 1623931, 7027567, 10678711, 15790321, 22796593, 32222107, 81867661, 183458857, 234750601, 574995877, 2498207293, 6177695707, 7095062437, 9272716111, 13564461457, 19397579293, 24344094727, 50689400581, 81420308971, 137405657593, 149289169177
Offset: 1

Views

Author

K. D. Bajpai, Jul 21 2014

Keywords

Comments

All the terms in this sequence are primes, but none are congruent to 9 mod 10.
All terms == 1 (mod 7). - Robert Israel, Jul 22 2014

Examples

			n = 2: n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 = 43, which is prime.
n = 10: n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 = 909091, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n^6 - n^5 + n^4 - n^3 + n^2 - n + 1, {n, 200}], PrimeQ]

A245482 Semiprimes of the form m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.

Original entry on oeis.org

3277, 13021, 102943, 233017, 478297, 2756293, 44693587, 465273397, 705483871, 859769191, 2117950381, 3996097561, 8123248981, 10554648343, 11980986577, 15318627451, 21753909997, 30299909641, 33705129193, 37423460467, 41477524747, 45891147541, 97434620557, 106376475037
Offset: 1

Views

Author

K. D. Bajpai, Jul 23 2014

Keywords

Comments

All the terms in this sequence are odd semiprimes.
Primes of this form are at A245427.

Examples

			m = 4: m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 3277 = 29 * 113, which is semiprime and appears in the sequence.
m = 5: m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 13021 = 29 * 449, which is semiprime and appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    A245482 = {}; k = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1; Do[If[PrimeOmega[k] == 2, AppendTo[A245482, k]], {n, 100}]; A245482
  • PARI
    for(n=1,100,s=sum(i=0,6,(-n)^i);if(bigomega(s)==2,print1(s,", "))) \\ Derek Orr, Jul 28 2014

A245483 Semiprimes of the form m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.

Original entry on oeis.org

44287, 838861, 247165843, 3138105961, 269971011311, 540609741211, 1034834473201, 3382547898907, 5824512944911, 9752380952381, 25405143539623, 91699453500601, 406683658856861, 794014903012651, 2005395532515211, 7936895933061811, 10230009756097561, 13103072183720201
Offset: 1

Views

Author

K. D. Bajpai, Jul 23 2014

Keywords

Comments

All the terms in sequence are odd semiprimes, but none is congruent to 5 or 9 (mod 10).

Examples

			m = 3: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 44287 = 67 * 661, which is semiprime and appears in the sequence.
m = 7: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 247165843 = 23 * 10746341, which is semiprime and appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    A245483 = {}; k = n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1; Do[If[PrimeOmega[k] == 2, AppendTo[A245483, k]], {n, 100}]; A245483
    Select[Table[1-n+n^2-n^3+n^4-n^5+n^6-n^7+n^8-n^9+n^10,{n,100}],PrimeOmega[ #] ==2&] (* Harvey P. Dale, Oct 10 2018 *)
  • PARI
    for(n=1,10^3,s=sum(i=0,10,(-n)^i);if(bigomega(s)==2,print1(s,", "))) \\ Derek Orr, Aug 03 2014
Showing 1-10 of 11 results. Next