cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016813 a(n) = 4*n + 1.

Original entry on oeis.org

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 23 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 64 ).
Numbers k such that k and (k+1) have the same binary digital sum. - Benoit Cloitre, Jun 05 2002
Numbers k such that (1 + sqrt(k))/2 is an algebraic integer. - Alonso del Arte, Jun 04 2012
Numbers k such that 2 is the only prime p that satisfies the relationship p XOR k = p + k. - Brad Clardy, Jul 22 2012
This may also be interpreted as the array T(n,k) = A001844(n+k) + A008586(k) read by antidiagonals:
1, 9, 21, 37, 57, 81, ...
5, 17, 33, 53, 77, 105, ...
13, 29, 49, 73, 101, 133, ...
25, 45, 69, 97, 129, 165, ...
41, 65, 93, 125, 161, 201, ...
61, 89, 121, 157, 197, 241, ...
...
- R. J. Mathar, Jul 10 2013
With leading term 2 instead of 1, 1/a(n) is the largest tolerance of form 1/k, where k is a positive integer, so that the nearest integer to (n - 1/k)^2 and to (n + 1/k)^2 is n^2. In other words, if interval arithmetic is used to square [n - 1/k, n + 1/k], every value in the resulting interval of length 4n/k rounds to n^2 if and only if k >= a(n). - Rick L. Shepherd, Jan 20 2014
Odd numbers for which the number of prime factors congruent to 3 (mod 4) is even. - Daniel Forgues, Sep 20 2014
For the Collatz conjecture, we identify two types of odd numbers. This sequence contains all the descenders: where (3*a(n) + 1) / 2 is even and requires additional divisions by 2. See A004767 for the ascenders. - Fred Daniel Kline, Nov 29 2014 [corrected by Jaroslav Krizek, Jul 29 2016]
a(n-1), n >= 1, is also the complex dimension of the manifold M(S), the set of all conjugacy classes of irreducible representations of the fundamental group pi_1(X,x_0) of rank 2, where S = {a_1, ..., a_{n}, a_{n+1} = oo}, a subset of P^1 = C U {oo}, X = X(S) = P^1 \ S, and x_0 a base point in X. See the Iwasaki et al. reference, Proposition 2.1.4. p. 150. - Wolfdieter Lang, Apr 22 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-sunlet graph. - Eric W. Weisstein, Nov 29 2017
For integers k with absolute value in A047202, also exponents of the powers of k having the same unit digit of k in base 10. - Stefano Spezia, Feb 23 2021
Starting with a(1) = 5, numbers ending with 01 in base 2. - John Keith, May 09 2022

Examples

			From _Leo Tavares_, Jul 02 2021: (Start)
Illustration of initial terms:
                                        o
                        o               o
            o           o               o
    o     o o o     o o o o o     o o o o o o o
            o           o               o
                        o               o
                                        o
(End)
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.

Crossrefs

Subsequence of A042963 and of A079523.
a(n) = A093561(n+1, 1), (4, 1)-Pascal column.
Cf. A004772 (complement).
Cf. A017557.

Programs

Formula

a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A001969(n) + A000069(n). - Philippe Deléham, Feb 04 2004
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
A179821(a(n)) = a(A179821(n)). - Reinhard Zumkeller, Jul 31 2010
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
a(n) = A058281(3n+1). - Eli Jaffe, Jun 07 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018

A003714 Fibbinary numbers: if n = F(i1) + F(i2) + ... + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + ... + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1's.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 128, 129, 130, 132, 133, 136, 137, 138, 144, 145, 146, 148, 149, 160, 161, 162, 164, 165, 168, 169, 170, 256, 257, 258, 260, 261, 264
Offset: 0

Views

Author

Keywords

Comments

The name "Fibbinary" is due to Marc LeBrun.
"... integers whose binary representation contains no consecutive ones and noticed that the number of such numbers with n bits was fibonacci(n)". [posting to sci.math by Bob Jenkins (bob_jenkins(AT)burtleburtle.net), Jul 17 2002]
From Benoit Cloitre, Mar 08 2003: (Start)
A number m is in the sequence if and only if C(3m, m) (or equally, C(3m, 2m)) is odd.
a(n) == A003849(n) (mod 2). (End)
Numbers m such that m XOR 2*m = 3*m. - Reinhard Zumkeller, May 03 2005. [This implies that A003188(2*a(n)) = 3*a(n) holds for all n.]
Numbers whose base-2 representation contains no two adjacent ones. For example, m = 17 = 10001_2 belongs to the sequence, but m = 19 = 10011_2 does not. - Ctibor O. Zizka, May 13 2008
m is in the sequence if and only if the central Stirling number of the second kind S(2*m, m) = A007820(m) is odd. - O-Yeat Chan (math(AT)oyeat.com), Sep 03 2009
A000120(3*a(n)) = 2*A000120(a(n)); A002450 is a subsequence.
Every nonnegative integer can be expressed as the sum of two terms of this sequence. - Franklin T. Adams-Watters, Jun 11 2011
Subsequence of A213526. - Arkadiusz Wesolowski, Jun 20 2012
This is also the union of A215024 and A215025 - see the Comment in A014417. - N. J. A. Sloane, Aug 10 2012
The binary representation of each term m contains no two adjacent 1's, so we have (m XOR 2m XOR 3m) = 0, and thus a two-player Nim game with three heaps of (m, 2m, 3m) stones is a losing configuration for the first player. - V. Raman, Sep 17 2012
Positions of zeros in A014081. - John Keith, Mar 07 2022
These numbers are similar to Fibternary numbers A003726, Tribbinary numbers A060140 and Tribternary numbers. This sequence is a subsequence of Fibternary numbers A003726. The number of Fibbinary numbers less than any power of two is a Fibonacci number. We can generate this sequence recursively: start with 0 and 1; then, if x is in the sequence add 2x and 4x+1 to the sequence. The Fibbinary numbers have the property that the n-th Fibbinary number is even if the n-th term of the Fibonacci word is a. Respectively, the n-th Fibbinary number is odd (of the form 4x+1) if the n-th term of the Fibonacci word is b. Every number has a Fibbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
This is the ordered set S of numbers defined recursively by: 0 is in S; if x is in S, then 2*x and 4*x + 1 are in S. See Kimberling (2006) Example 3, in references below. - Harry Richman, Jan 31 2024

Examples

			From _Joerg Arndt_, Jun 11 2011: (Start)
In the following, dots are used for zeros in the binary representation:
  a(n)  binary(a(n))  n
    0:    .......     0
    1:    ......1     1
    2:    .....1.     2
    4:    ....1..     3
    5:    ....1.1     4
    8:    ...1...     5
    9:    ...1..1     6
   10:    ...1.1.     7
   16:    ..1....     8
   17:    ..1...1     9
   18:    ..1..1.    10
   20:    ..1.1..    11
   21:    ..1.1.1    12
   32:    .1.....    13
   33:    .1....1    14
   34:    .1...1.    15
   36:    .1..1..    16
   37:    .1..1.1    17
   40:    .1.1...    18
   41:    .1.1..1    19
   42:    .1.1.1.    20
   64:    1......    21
   65:    1.....1    22
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, 1973, pp. 85, 493.

Crossrefs

A007088(a(n)) = A014417(n) (same sequence in binary). Complement: A004780. Char. function: A085357. Even terms: A022340, odd terms: A022341. First difference: A129761.
Other sequences based on similar restrictions on binary expansion: A003726 & A278038, A003754, A048715, A048718, A107907, A107909.
3*a(n) is in A001969.
Cf. A014081 (count 11 bits).

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    a003714 n = a003714_list !! n
    a003714_list = 0 : f (singleton 1) where
       f :: Set Integer -> [Integer]
       f s = m : (f $ insert (4*m + 1) $ insert (2*m) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 03 2012, Feb 07 2012
    
  • Maple
    A003714 := proc(n)
        option remember;
        if n < 3 then
            n ;
        else
            2^(A072649(n)-1) + procname(n-combinat[fibonacci](1+A072649(n))) ;
        end if;
    end proc:
    seq(A003714(n),n=0..10) ;
    # To produce a table giving n, a(n) (base 10), a(n) (base 2) - from N. J. A. Sloane, Sep 30 2018
    # binary: binary representation of n, in human order
    binary:=proc(n) local t1,L;
    if n<0 then ERROR("n must be nonnegative"); fi;
    if n=0 then return([0]); fi;
    t1:=convert(n,base,2); L:=nops(t1);
    [seq(t1[L+1-i],i=1..L)];
    end;
    for n from 0 to 100 do t1:=A003714(n); lprint(n, t1, binary(t1)); od:
  • Mathematica
    fibBin[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; FromDigits[fr, 2]]; Table[fibBin[n], {n, 0, 61}] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[0, 270], ! MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &] (* Harvey P. Dale, Jul 17 2011 *)
    Select[Range[256], BitAnd[#, 2 #] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
    With[{r = Range[10^5]}, Pick[r, BitAnd[r, 2 r], 0]] (* Eric W. Weisstein, Aug 18 2017 *)
    Select[Range[0, 299], SequenceCount[IntegerDigits[#, 2], {1, 1}] == 0 &] (* Requires Mathematica version 10 or later. -- Harvey P. Dale, Dec 06 2018 *)
  • PARI
    msb(n)=my(k=1); while(k<=n, k<<=1); k>>1
    for(n=1,1e4,k=bitand(n,n<<1);if(k,n=bitor(n,msb(k)-1),print1(n", "))) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    select( is_A003714(n)=!bitand(n,n>>1), [0..266])
    {(next_A003714(n,t)=while(t=bitand(n+=1,n<<1), n=bitor(n,1<A003714(t)) \\ M. F. Hasler, Nov 30 2021
    
  • Python
    for n in range(300):
        if 2*n & n == 0:
            print(n, end=",") # Alex Ratushnyak, Jun 21 2012
    
  • Python
    def A003714(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= n:
                s += 1
                n -= d
        return s # Chai Wah Wu, Jun 14 2018
    
  • Python
    def fibbinary():
        x = 0
        while True:
            yield x
            y = ~(x >> 1)
            x = (x - y) & y # Falk Hüffner, Oct 23 2021
    (C++)
    /* start with x=0, then repeatedly call x=next_fibrep(x): */
    ulong next_fibrep(ulong x)
    {
        // 2 examples:         //  ex. 1             //  ex.2
        //                     // x == [*]0 010101   // x == [*]0 01010
        ulong y = x | (x>>1);  // y == [*]? 011111   // y == [*]? 01111
        ulong z = y + 1;       // z == [*]? 100000   // z == [*]? 10000
        z = z & -z;            // z == [0]0 100000   // z == [0]0 10000
        x ^= z;                // x == [*]0 110101   // x == [*]0 11010
        x &= ~(z-1);           // x == [*]0 100000   // x == [*]0 10000
        return x;
    }
    /* Joerg Arndt, Jun 22 2012 */
    
  • Scala
    (0 to 255).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) ? true : false; // Frank Hollstein, Jul 07 2021

Formula

No two adjacent 1's in binary expansion.
Let f(x) := Sum_{n >= 0} x^Fibbinary(n). (This is the generating function of the characteristic function of this sequence.) Then f satisfies the functional equation f(x) = x*f(x^4) + f(x^2).
a(0) = 0, a(1) = 1, a(2) = 2, a(n) = 2^(A072649(n) - 1) + a(n - A000045(1 + A072649(n))). - Antti Karttunen
It appears that this sequence gives m such that A082759(3*m) is odd; or, probably equivalently, m such that A037011(3*m) = 1. - Benoit Cloitre, Jun 20 2003
If m is in the sequence then so are 2*m and 4*m + 1. - Henry Bottomley, Jan 11 2005
A116361(a(n)) <= 1. - Reinhard Zumkeller, Feb 04 2006
A085357(a(n)) = 1; A179821(a(n)) = a(n). - Reinhard Zumkeller, Jul 31 2010
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 19 2012
a(n) = a(A193564(n+1))*2^(A003849(n) + 1) + A003849(n) for n > 0. - Daniel Starodubtsev, Aug 05 2021
There are Fibonacci(n+1) terms with up to n bits in this sequence. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=1} 1/a(n) = 3.704711752910469457886531055976801955909489488376627037756627135425780134020... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Edited by Antti Karttunen, Feb 21 2006
Cross reference to A007820 added (into O-Y.C. comment) by Jason Kimberley, Sep 14 2009
Typo corrected by Jeffrey Shallit, Sep 26 2014

A090077 In binary expansion of n: reduce contiguous blocks of 1's to 1.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 1, 8, 9, 10, 5, 4, 5, 2, 1, 16, 17, 18, 9, 20, 21, 10, 5, 8, 9, 10, 5, 4, 5, 2, 1, 32, 33, 34, 17, 36, 37, 18, 9, 40, 41, 42, 21, 20, 21, 10, 5, 16, 17, 18, 9, 20, 21, 10, 5, 8, 9, 10, 5, 4, 5, 2, 1, 64, 65, 66, 33, 68, 69, 34, 17, 72, 73, 74, 37, 36, 37, 18, 9
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Examples

			100 -> '1100100' -> [11]00[1]00 -> [1]00[1]00 -> '100100' -> 36=a(100).
		

Crossrefs

Programs

  • Mathematica
    Array[FromDigits[Flatten[Split@ IntegerDigits[#, 2] /. w_List /; First[w] == 1 -> {1}], 2] &, 80, 0] (* Michael De Vlieger, Jul 28 2022 *)
  • Python
    def a(n):
        b = bin(n)[2:]
        while "11" in b: b = b.replace("11", "1")
        return int(b, 2)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 27 2022

Formula

a(a(n)) = a(n); a(A090078(n)) = A090078(a(n)) = A090079(n).
a(A003714(n)) = A003714(n); a(A004780(n)) < A004780(n); a(n) <= A179821(n); A085357(a(n)) = 1. - Reinhard Zumkeller, Jul 31 2010
Showing 1-3 of 3 results.