A032766 Numbers that are congruent to 0 or 1 (mod 3).
0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..10000
- Allan Bickle, Nordhaus-Gaddum Theorems for k-Decompositions, Congr. Num. 211 (2012) 171-183.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Erich Friedman, Problem of the month November 2009
- Z. Füredi, A. Kostochka, M. Stiebitz, R. Skrekovski, and D. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, J. Graph Theory 50 (2005), 273-292.
- Andreas M. Hinz, Sandi Klavžar, Uroš Milutinović and Ciril Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 282. [Book's website]
- Hsien-Kuei Hwang, S. Janson and T.-H. Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint 2016.
- Hsien-Kuei Hwang, S. Janson and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
- International Mathematical Olympiad 2001, Hong Kong Preliminary Selection Contest, Problem #20. [Broken link; Cached copy]
- Matroids Matheplanet, Number of d-generator groups of order 2^(d+1) and exponent-p class 2 (in German).
- Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche, Vol. 76, No. 1 (2021), pp. 277-310, see p. 302.
- Kival Ngaokrajang, Illustration of initial terms (U).
- Eric Weisstein's World of Mathematics, Andrásfai Graph
- Eric Weisstein's World of Mathematics, Clique Covering Number
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Hadwiger Number
- Eric Weisstein's World of Mathematics, Independence Number
- Eric Weisstein's World of Mathematics, Web Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a032766 n = div n 2 + n -- Reinhard Zumkeller, Dec 13 2014 (MIT/GNU Scheme) (define (A032766 n) (+ n (floor->exact (/ n 2)))) ;; Antti Karttunen, Jan 24 2015
-
Magma
&cat[ [n, n+1]: n in [0..100 by 3] ]; // Vincenzo Librandi, Nov 16 2014
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008 seq(floor(n/2)+n, n=0..69); # Gary Detlefs, Mar 19 2010 select(n->member(n mod 3,{0,1}), [$0..103]); # Peter Luschny, Apr 06 2014
-
Mathematica
a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *) Select[Range[0, 200], MemberQ[{0, 1}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *) Flatten[{#,#+1}&/@(3Range[0,40])] (* or *) LinearRecurrence[{1,1,-1}, {0,1,3}, 100] (* or *) With[{nn=110}, Complement[Range[0,nn], Range[2,nn,3]]] (* Harvey P. Dale, Mar 10 2013 *) CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *) Floor[3 Range[0, 69]/2] (* L. Edson Jeffery, Jan 14 2017 *) Drop[Range[0,110],{3,-1,3}] (* Harvey P. Dale, Sep 02 2023 *)
-
PARI
{a(n) = n + n\2}
-
PARI
concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
-
SageMath
[int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024
Formula
G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(-n) = -A007494(n).
a(n) = A049615(n, 2), for n > 2.
From Paul Barry, Sep 04 2003: (Start)
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Row sums of triangle A133083. - Gary W. Adamson, Sep 08 2007
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
A004396(a(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor(n/2) + n. - Gary Detlefs, Mar 19 2010
a(n) = 3n - a(n-1) - 2, for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = n + (n-1) - (n-2) + (n-3) - ... 1 = A052928(n) + A008619(n-1). - Jaroslav Krizek, Mar 22 2011
a(n) = a(n-1) + a(n-2) - a(n-3). - Robert G. Wilson v, Mar 28 2011
a(n) = 2n - ceiling(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = Sum_{i=1..n} gcd(i, 2). - Wesley Ivan Hurt, Jan 23 2014
a(n) = 2n + floor((-n - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
A092942(a(n)) = n for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = floor(3*n/2). - L. Edson Jeffery, Jan 18 2015
E.g.f.: (3*x*exp(x) - sinh(x))/2. - Ilya Gutkovskiy, Jul 18 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021
Extensions
Better description from N. J. A. Sloane, Aug 01 1998
Comments