A109043
a(n) = lcm(n,2).
Original entry on oeis.org
0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Dorin Andrica, Sorin Rădulescu, and George Cătălin Ţurcaş, The Exponent of a Group: Properties, Computations and Applications, Disc. Math. and Applications, Springer, Cham (2020), 57-108.
- Piotr Miska, Arithmetic properties of the sequence of derangements, Journal of Number Theory, Vol. 163 (2016), pp. 114-145; arXiv preprint, arXiv:1508.01987 [math.NT], 2015. See p. 124 (p. 14 in the preprint).
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
- Index entries for sequences related to lcm's.
-
a109043 = (lcm 2)
a109043_list = zipWith (*) [0..] a000034_list
-- Reinhard Zumkeller, Mar 31 2012
-
[0, 2, 2] cat [Exponent(DihedralGroup(n)) : n in [3..65]]; // Arkadiusz Wesolowski, Sep 10 2013
-
LCM[Range[0,70],2] (* Harvey P. Dale, Aug 19 2012 *)
-
a(n)=lcm(n,2) \\ Charles R Greathouse IV, Sep 24 2015
-
def A109043(n): return n<<1 if n&1 else n # Chai Wah Wu, Aug 05 2024
-
[lcm(n,2) for n in range(0, 68)] # Zerinvary Lajos, Jun 07 2009
A065423
Number of ordered length 2 compositions of n with at least one even summand.
Original entry on oeis.org
0, 0, 2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18, 9, 20, 10, 22, 11, 24, 12, 26, 13, 28, 14, 30, 15, 32, 16, 34, 17, 36, 18, 38, 19, 40, 20, 42, 21, 44, 22, 46, 23, 48, 24, 50, 25, 52, 26, 54, 27, 56, 28, 58, 29, 60, 30, 62, 31, 64, 32, 66, 33, 68, 34, 70, 35, 72, 36, 74
Offset: 1
a(7) = 6 because we can write 7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1; a(8) = 3 because we can write 8 = 2+6 = 4+4 = 6+2.
-
int a(int n){n--;return n>>(n&1);} // Mia Boudreau, Aug 27 2025
-
A065423 := proc(n)
(3*n-4-(-1)^n*n)/4 ;
end proc:
seq(A065423(n),n=1..40) ; # R. J. Mathar, Jan 24 2022
-
LinearRecurrence[{0,2,0,-1},{0,0,2,1},100] (* Harvey P. Dale, May 14 2014 *)
-
a(n)=n-=2;if(n%2,n+1,n/2)
Original entry on oeis.org
1, 3, 3, 7, 5, 11, 7, 15, 9, 19, 11, 23, 13, 27, 15, 31, 17, 35, 19, 39, 21, 43, 23, 47, 25, 51, 27, 55, 29, 59, 31, 63, 33, 67, 35, 71, 37, 75, 39, 79, 41, 83, 43, 87, 45, 91, 47, 95, 49, 99, 51, 103, 53, 107, 55, 111, 57, 115, 59, 119, 61, 123, 63, 127, 65, 131, 67, 135, 69
Offset: 1
A066104
a(2n) = 2n, a(2n+1) = 4(n+1).
Original entry on oeis.org
0, 4, 2, 8, 4, 12, 6, 16, 8, 20, 10, 24, 12, 28, 14, 32, 16, 36, 18, 40, 20, 44, 22, 48, 24, 52, 26, 56, 28, 60, 30, 64, 32, 68, 34, 72, 36, 76, 38, 80, 40, 84, 42, 88, 44, 92, 46, 96, 48, 100, 50, 104, 52, 108, 54, 112, 56, 116, 58, 120, 60, 124, 62, 128, 64, 132, 66, 136
Offset: 0
-
Table[(3*n+2-(n+2)*(-1)^n)/2, {n,0,50}] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 4, 2, 8}, 50] (* G. C. Greubel, Dec 24 2016 *)
-
{ for (n=0, 1000, if(n%2, a=2*n + 2, a=n); write("b066104.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 14 2009
-
concat([0], Vec(2*x*(x+2)/(1-x^2)^2 + O(x^50))) \\ G. C. Greubel, Dec 24 2016
A114751
The following triangle contains n consecutive numbers beginning from n in ascending order if n is odd else in descending order. Sequence contains the triangle by rows.
Original entry on oeis.org
1, 3, 2, 3, 4, 5, 7, 6, 5, 4, 5, 6, 7, 8, 9, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14, 13, 12, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12
Offset: 1
1
3 2
3 4 5
7 6 5 4
5 6 7 8 9
11 10 9 8 7 6
...
-
for n from 1 to 14 do if n mod 2 = 1 then print(seq(k,k=n..2*n-1)) else print(seq(2*n-k,k=1..n)) fi od; # yields sequence in triangular form # Emeric Deutsch, Jan 26 2006
A211161
Table T(n,k) = n, if k is odd, k/2 if k is even; n, k > 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 2, 1, 4, 1, 2, 3, 1, 5, 3, 2, 2, 4, 1, 6, 1, 3, 3, 2, 5, 1, 7, 4, 2, 3, 4, 2, 6, 1, 8, 1, 4, 3, 3, 5, 2, 7, 1, 9, 5, 2, 4, 4, 3, 6, 2, 8, 1, 10, 1, 5, 3, 4, 5, 3, 7, 2, 9, 1, 11, 6, 2, 5, 4, 4, 6, 3, 8, 2, 10, 1, 12, 1, 6, 3, 5, 5, 4, 7, 3
Offset: 1
The start of the sequence as table for general case:
b(1)..c(1)..b(1)..c(2)..b(1)..c(3)..b(1)..c(4)...
b(2)..c(1)..b(2)..c(2)..b(2)..c(3)..b(2)..c(4)...
b(3)..c(1)..b(3)..c(2)..b(3)..c(3)..b(3)..c(4)...
b(4)..c(1)..b(4)..c(2)..b(4)..c(3)..b(4)..c(4)...
b(5)..c(1)..b(5)..c(2)..b(5)..c(3)..b(5)..c(4)...
b(6)..c(1)..b(6)..c(2)..b(6)..c(3)..b(6)..c(4)...
b(7)..c(1)..b(7)..c(2)..b(7)..c(3)..b(7)..c(4)...
b(8)..c(1)..b(8)..c(2)..b(8)..c(3)..b(8)..c(4)...
. . .
The start of the sequence as triangle array read by rows for general case:
b(1);
c(1),b(2);
b(1),c(1),b(3);
c(2),b(2),c(1),b(4);
b(1),c(2),b(3),c(1),b(5);
c(3),b(2),c(2),b(4),c(1),b(6);
b(1),c(3),b(3),c(2),b(5),c(1),b(7);
c(4),b(2),c(3),b(4),c(2),b(6),c(1),b(8);
. . .
Row number r contains r numbers.
If r is odd b(1),c((r-1)/2),b(3),c((r-1)/2-1),b(5),c((r-1)/2-2),...c(1),b(r).
If r is even c(r/2),b(2),c(r/2-1),b(4),c(r/2-2),b(6),...c(1),b(r).
The start of the sequence as table for b(n)=n and c(k)=k:
1..1..1..2..1..3..1..4...
2..1..2..2..2..3..2..4...
3..1..3..2..3..3..3..4...
4..1..4..2..4..3..4..4...
5..1..5..2..5..3..5..4...
6..1..6..2..6..3..6..4...
7..1..7..2..7..3..7..4...
8..1..8..2..8..3..8..4...
. . .
The start of the sequence as triangle array read by rows for b(n)=n and c(k)=k:
1;
1,2;
1,1,3;
2,2,1,4;
1,2,3,1,5;
3,2,2,4,1,6;
1,3,3,2,5,1,7;
4,2,3,4,2,6,1,8;
. . .
Row number r contains r numbers.
If r is odd 1,(r-1)/2,3,(r-1)/2-1,5,(r-1)/2-2,...1,r.
If r id even r/2,2,r/2-1,4,r/2-1,6,...1,r.
A204904
p(n)-q(n), where (p(n), q(n)) is the least pair of odd primes for which n divides p(n)-q(n).
Original entry on oeis.org
2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130
Offset: 1
A211197
Table T(n,k) = 2*n + ((-1)^n)*(1/2 - (k-1) mod 2) - 1/2; n, k > 0, read by antidiagonals.
Original entry on oeis.org
1, 2, 4, 1, 3, 5, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
Offset: 1
The start of the sequence as table for general case:
b(1)..c(1)..b(1)..c(1)..b(1)..c(1)..b(1)..c(1)..
c(2)..b(2)..c(2)..b(2)..c(2)..b(2)..c(2)..b(2)..
b(3)..c(3)..b(3)..c(3)..b(3)..c(3)..b(3)..c(3)..
c(4)..b(4)..c(4)..b(4)..c(4)..b(4)..c(4)..b(4)..
b(5)..c(5)..b(5)..c(5)..b(5)..c(5)..b(5)..c(5)..
c(6)..b(6)..c(6)..b(6)..c(6)..b(6)..c(6)..b(6)..
b(7)..c(7)..b(7)..c(7)..b(7)..c(7)..b(7)..c(7)..
c(8)..b(8)..c(8)..b(8)..c(8)..b(8)..c(8)..b(8)..
. . .
The start of the sequence as triangle array read by rows for general case:
b(1);
c(1),c(2);
b(1),b(2),b(3);
c(1),c(2),c(3),c(4);
b(1),b(2),b(3),b(4),b(5);
c(1),c(2),c(3),c(4),c(5),c(6);
b(1),b(2),b(3),b(4),b(5),b(6),b(7);
c(1),c(2),c(3),c(4),c(5),c(6),c(7),c(8);
. . .
Row number r contains r numbers.
If r is odd b(1),b(2),...,b(r).
If r is even c(1),c(2),...,c(r).
The start of the sequence as table for b(n)=2*n-1 and c(n)=2*n:
1....2...1...2...1...2...1...2...
4....3...4...3...4...3...4...3...
5....6...5...6...5...6...5...6...
8....7...8...7...8...7...8...7...
9...10...9..10...9..10...9..10...
12..11..12..11..12..11..12..11...
13..14..13..14..13..14..13..14...
16..15..16..15..16..15..16..15...
. . .
The start of the sequence as triangle array read by rows for b(n)=2*n-1 and c(n)=2*n:
1;
2,4;
1,3,5;
2,4,6,8;
1,3,5,7,9;
2,4,6,8,10,12;
1,3,5,7,9,11,13;
2,4,6,8,10,12,14,16;
. . .
Row number r contains r numbers.
If r is odd 1,3,...2*r-1 - coincides with the elements row number r triangle array read by rows for sequence 2*A002260-1.
If r is even 2,4,...,2*r - coincides with the elements row number r triangle array read by rows for sequence 2*A002260.
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result =2*i+((-1)**i)*(0.5 - (j-1) % 2) - 0.5
-
a211197_list = [2*n - k%2 for k in range(1, 13) for n in range(1, k+1)] # David Radcliffe, Jun 01 2025
Showing 1-8 of 8 results.
Comments