A131355 Partial sums of A065423 plus one.
1, 1, 1, 3, 4, 8, 10, 16, 19, 27, 31, 41, 46, 58, 64, 78, 85, 101, 109, 127, 136, 156, 166, 188, 199, 223, 235, 261, 274, 302, 316, 346, 361, 393, 409, 443, 460, 496, 514, 552, 571, 611, 631, 673, 694, 738, 760, 806, 829, 877, 901, 951, 976, 1028, 1054, 1108
Offset: 0
Links
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A065423.
Programs
-
Magma
[(6*n^2-10*n+17-(1+2*n)*(-1)^n)/16: n in [0..70]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A065423 := proc(n) if n mod 2 <> 0 then n-1 ; else n/2-1 ; fi ; end: A131355 := proc(n) 1+add(A065423(i), i=1..n) ; end: seq(A131355(n),n=0..80) ; # R. J. Mathar, Oct 04 2007
-
Mathematica
Table[(6 n^2 - 10 n + 17 - (1 + 2 n) (-1)^n)/16, {n, 0, 100}] (* Wesley Ivan Hurt, Jul 28 2015 *) LinearRecurrence[{1, 2, -2, -1, 1}, {1, 1, 1, 3, 4}, 70] (* Vincenzo Librandi, Jul 29 2015 *) Join[{1},Accumulate[LinearRecurrence[{0,2,0,-1},{0,0,2,1},100]]+1] (* Harvey P. Dale, May 28 2025 *)
Formula
From R. J. Mathar, Jul 17 2009: (Start)
G.f.: (1 - 2*x^2 + 2*x^3 + 2*x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n > 5. (End)
a(n) = (6*n^2 - 10*n + 17 - (1+2n)*(-1)^n)/16. - Wesley Ivan Hurt, Jul 28 2015
a(n) = 1 + binomial(n,2) - binomial(floor(n/2)+1,2). - Juan B. Gil, Mar 10 2023
Extensions
More terms from R. J. Mathar, Oct 04 2007
Comments