A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A002476 Primes of the form 6m + 1.
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1
Comments
Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024
Examples
Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).) Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence. 17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- C. Banderier, Calcul de (-3/p)
- Barry Brent, Finite Field Models of Polynomials Interpolating Fourier Coefficients of Modular Functions for Hecke Groups, Integers (2024) Vol. 24, Art. No. A18. See p. 13.
- F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 526.
- K. G. Reuschle, Tafeln complexer Primzahlen, Königl. Akademie der Wissenschaften, Berlin, 1875, p. 1.
- Neville Robbins, On the Infinitude of Primes of the Form 3k+1, Fib. Q., 43,1 (2005), 29-30.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Index to sequences related to decomposition of primes in quadratic fields
Crossrefs
Programs
-
GAP
Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
-
Haskell
a002476 n = a002476_list !! (n-1) a002476_list = filter ((== 1) . (`mod` 6)) a000040_list -- Reinhard Zumkeller, Jan 15 2013
-
J
(#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
-
Magma
[n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
-
Maple
a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
-
Mathematica
Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
-
PARI
select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
Formula
From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021
A301451 Numbers congruent to {1, 7} mod 9.
1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1
Comments
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
GAP
a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
-
Magma
&cat [[9*n+1, 9*n+7]: n in [0..40]];
-
Mathematica
Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}] {#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
-
PARI
Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
-
Python
[2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
-
Sage
[n for n in (1..300) if n % 9 in (1,7)]
Formula
O.g.f.: x*(1 + 6*x + 2*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (3 + 8*exp(x) - 11*exp(2*x) + 18*x*exp(2*x))*exp(-x)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 2*(2*n - 1) + (2*n - 3*(1 - (-1)^n))/4. Therefore, for n even a(n) = (9*n - 4)/2, otherwise a(n) = (9*n - 7)/2.
A072835 Exponents occurring in expansion of F_9(q^2).
0, 8, 14, 18, 20, 26, 32, 36, 38, 44, 50, 54, 56, 62, 68, 72, 74, 80, 86, 90, 92, 98, 104, 108, 110, 116, 122, 126, 128, 134, 140, 144, 146, 152, 158, 162, 164, 170, 176, 180, 182, 188, 194, 198, 200, 206, 212, 216, 218, 224, 230, 234, 236, 242, 248, 252, 254, 260, 266, 270, 272, 278
Offset: 0
Comments
Twice (A242660 without 1). Also, norms of vectors of the A*8 lattice. - _Andrey Zabolotskiy, Nov 10 2021
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc. 128 (2000), 1333-1338.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[9,q_]:= f[q^9, q^9]^8 - 16*q^9*f[q^9, q^27]^8 + 256*q^18*f[q^18, q^54]^8 + 18*q^8*QPochhammer[q^18]^12/QPochhammer[q^6]^4; cfs = CoefficientList[Series[F[9, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)
Formula
G.f.: -2*x*(x^4-x^3-2*x^2-3*x-4) / (x^5-x^4-x+1). - Colin Barker, Jul 31 2013
a(n+4) = a(n) + 18 for n > 0. - Jerzy R Borysowicz, Sep 02 2023
a(n)/n ~ 9/2. - Jerzy R Borysowicz, Sep 03 2023
a(n) = 2 * A056991(n+1) for n>=1. - Alois P. Heinz, Sep 03 2023
Extensions
Terms a(22) onward added by G. C. Greubel, Apr 16 2018
A244713 Positive numbers primitively represented by the binary quadratic form (1, 1, -2).
1, 4, 7, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142, 145, 148, 151
Offset: 1
Keywords
Comments
Discriminant = 9.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y - 2 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
Formula
Conjectures from Colin Barker, Oct 31 2016: (Start)
a(n) = a(n-1)+a(n-11)-a(n-12) for n>12.
G.f.: (1 +2*x)*(1 +x +x^2)*(1 +x^3 +x^7) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10)).
(End)
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions