cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000538 Sum of fourth powers: 0^4 + 1^4 + ... + n^4.

Original entry on oeis.org

0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000537 by the transform a(n) = n*A000537(n) - Sum_{i=0..n-1} A000537(i). - Bruno Berselli, Apr 26 2010
A formula for the r-th successive summation of k^4, for k = 1 to n, is ((12*n^2+(12*n-5)*r+r^2)*(2*n+r)*(n+r)!)/((r+4)!*(n-1)!), (H. W. Gould). - Gary Detlefs, Jan 02 2014
The number of four dimensional hypercubes in a 4D grid with side lengths n. This applies in general to k dimensions. That is, the number of k-dimensional hypercubes in a k-dimensional grid with side lengths n is equal to the sum of 1^k + 2^k + ... + n^k. - Alejandro Rodriguez, Oct 20 2020

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
    -- Reinhard Zumkeller, Nov 11 2012
    
  • Magma
    [n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
  • Maple
    A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
  • Mathematica
    Accumulate[Range[0,40]^4] (* Harvey P. Dale, Jan 13 2011 *)
    CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
    Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* Harvey P. Dale, Jun 06 2021 *)
  • Maxima
    A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
    makelist(A000538(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
    
  • Python
    A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
    for _ in range(10**2):
        for i in range(5):
            m[i+1] += m[i]
        A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Python
    def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
    
  • Sage
    [bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30.
The preceding formula is due to al-Kachi (1394-1437). - Juri-Stepan Gerasimov, Jul 12 2009
G.f.: x*(x+1)*(1+10*x+x^2)/(1-x)^6. Simon Plouffe in his 1992 dissertation. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - Vladeta Jovovic, May 08 2002
a(n) = Sum_{i = 1..n} J_4(i)*floor(n/i), where J_4 is A059377. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - Ant King, Sep 23 2013
a(n) = -Sum_{j=1..4} j*Stirling1(n+1,n+1-j)*Stirling2(n+4-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015

Extensions

The general V. Jovovic formula has been slightly changed after his approval by Wolfdieter Lang, Nov 03 2011

A254647 Fourth partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n,20}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)
    CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x,0,19}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +247*x +4293*x^2 +15619*x^3 +15619*x^4 +4293*x^5 +247*x^6 +x^7)/(1-x)^13.
a(n) = n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1 +4*n +n^2)*(21 -48*n +20*n^2 + 16*n^3 +2*n^4)/23760.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^8.

A101092 Second partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 34, 310, 1610, 6035, 18236, 47244, 109020, 229845, 450670, 832546, 1463254, 2465255, 4005080, 6304280, 9652056, 14419689, 21076890, 30210190, 42543490, 58960891, 80531924, 108539300, 144509300, 190244925, 247861926, 319827834, 409004110, 518691535
Offset: 1

Views

Author

Cecilia Rossiter, Dec 14 2004

Keywords

Crossrefs

Programs

  • Magma
    [(n*(1+n)*(2+n)*(-1+n*(2+n))*(1+2*n*(2+n)))/84: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
    
  • Maple
    f:=n->(2*n^7-7*n^5+7*n^3-2*n)/84;
    [seq(f(n),n=0..50)];  # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Nest[Accumulate,Range[30]^5,2] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,34,310,1610,6035,18236,47244,109020},30] (* Harvey P. Dale, Aug 22 2022 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n*(n+2)-1)*(2*n*(2 + n)+1)/84 \\ Charles R Greathouse IV, Apr 21 2015
    
  • Python
    def A101092(n): return n*(n*(n*(n*(n*(n*(n+7<<1)+35)+35)+7)-7)-2)//84 # Chai Wah Wu, Oct 03 2024
  • Sage
    [n*(1+n)*(2+n)*(n*(2+n)-1)*(1+2*n*(2+n))/84 for n in range(1,30)] # Danny Rorabaugh, Apr 21 2015
    

Formula

a(n) = (n*(1 + n)*(2 + n)*(-1 + n*(2 + n))*(1 + 2*n*(2 + n)))/84.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8. - Colin Barker, Apr 16 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^5, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^5. - Luciano Ancora, Jan 08 2015
E.g.f.: exp(x)*x*(84 + 1344*x + 2954*x^2 + 1995*x^3 + 525*x^4 + 56*x^5 + 2*x^6)/84. - Stefano Spezia, May 04 2024

Extensions

Edited by Ralf Stephan, Dec 16 2004

A254681 Fifth partial sums of fourth powers (A000583).

Original entry on oeis.org

1, 21, 176, 936, 3750, 12342, 35112, 89232, 207207, 446875, 906048, 1743248, 3206268, 5670588, 9690000, 16062144, 25912029, 40797009, 62837104, 94875000, 140670530, 205134930, 294610680, 417203280, 583171875, 805386231
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			Fourth differences:  1, 12,  23,  24, (repeat 24)  ...   (A101104)
Third differences:   1, 13,  36,  60,   84,   108, ...   (A101103)
Second differences:  1, 14,  50, 110,  194,   302, ...   (A005914)
First differences:   1, 15,  65, 175,  369,   671, ...   (A005917)
-------------------------------------------------------------------------
The fourth powers:   1, 16,  81, 256,  625,  1296, ...   (A000583)
-------------------------------------------------------------------------
First partial sums:  1, 17,  98, 354,  979,  2275, ...   (A000538)
Second partial sums: 1, 18, 116, 470, 1449,  3724, ...   (A101089)
Third partial sums:  1, 19, 135, 605, 2054,  5778, ...   (A101090)
Fourth partial sums: 1, 20, 155, 760, 2814,  8592, ...   (A101091)
Fifth partial sums:  1, 21, 176, 936, 3750, 12342, ...   (this sequence)
		

Crossrefs

Programs

  • Magma
    [Binomial(n+5,6)*n*(n+5)*(2*n+5)/42: n in [1..30]]; // G. C. Greubel, Dec 01 2018
    
  • Maple
    seq(coeff(series((x+11*x^2+11*x^3+x^4)/(1-x)^10,x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 02 2018
  • Mathematica
    Table[n^2(1+n)(2+n)(3+n)(4+n)(5+n)^2(5+2n)/30240, {n,26}] (* or *)
    CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(1-x)^10, {x,0,25}], x]
    CoefficientList[Series[(1/30240)E^x (30240 + 604800 x + 2041200 x^2 + 2368800 x^3 + 1233540 x^4 + 326592 x^5 + 46410 x^6 + 3540 x^7 + 135 x^8 + 2 x^9), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 02 2018 *)
    Nest[Accumulate[#]&,Range[30]^4,5] (* Harvey P. Dale, Jan 03 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((x+11*x^2+11*x^3+x^4)/(1-x)^10) \\ G. C. Greubel, Dec 01 2018
    
  • Sage
    [binomial(n+5,6)*n*(n+5)*(2*n+5)/42 for n in (1..30)] # G. C. Greubel, Dec 01 2018

Formula

G.f.:(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^10.
a(n) = n^2*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)^2*(5 + 2*n)/30240.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^4.
E.g.f.: (1/30240)*exp(x)*(30240 + 604800*x + 2041200*x^2 + 2368800*x^3 + 1233540*x^4 + 326592*x^5 + 46410*x^6 + 3540*x^7 + 135*x^8 + 2*x^9). - Stefano Spezia, Dec 02 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 172032*log(2)/125 - 2382233/2500.
Sum_{n>=1} (-1)^(n+1)/a(n) = 42*Pi^2/25 - 43008*Pi/125 + 2663213/2500. (End)

A254469 Sixth partial sums of cubes (A000578).

Original entry on oeis.org

1, 14, 96, 450, 1650, 5082, 13728, 33462, 75075, 157300, 311168, 586092, 1058148, 1841100, 3100800, 5073684, 8090181, 12603954, 19228000, 28778750, 42329430, 61274070, 87403680, 122996250, 170922375, 234768456, 318979584, 429024376, 571584200, 754769400
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1,  7, 19,  37,   61,   91, ... (A003215)
-------------------------------------------------------------------------
The cubes:           1,  8, 27,  64,  125,  216, ... (A000578)
-------------------------------------------------------------------------
First partial sums:  1,  9, 36, 100,  225,  441, ... (A000537)
Second partial sums: 1, 10, 46, 146,  371,  812, ... (A024166)
Third partial sums:  1, 11, 57, 203,  574, 1386, ... (A101094)
Fourth partial sums: 1, 12, 69, 272,  846, 2232, ... (A101097)
Fifth partial sums:  1, 13, 82, 354, 1200, 3432, ... (A101102)
Sixth partial sums:  1, 14, 96, 450, 1650, 5082, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n)^2 (2 + n) (3 + n) (4 + n) (5 + n)^2 (6 + n)/60480, {n, 27}] (* or *) CoefficientList[Series[(1 + 4 x + x^2)/(- 1 + x)^10, {x, 0, 26}], x]
    Nest[Accumulate,Range[30]^3,6] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,14,96,450,1650,5082,13728,33462,75075,157300},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    a(n)=n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (x + 4*x^2 + x^3)/(- 1 + x)^10.
a(n) = n*(1 + n)^2*(2 + n)*(3 + n)*(4 + n)*(5 + n)^2*(6 + n)/60480.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^3.
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 217/200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 223769/200 - 8064*log(2)/5. (End)

A254644 Fourth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852, 3263403, 6422208, 12046268, 21675408, 37608828, 63194304, 103199469, 164281524, 255573769, 389409504, 582206130, 855534680, 1237402530, 1763779680, 2480401755, 3444885756, 4729197591, 6422513536, 8634521016, 11499207456
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (this sequence)
		

Crossrefs

Cf. A101091 (fourth partial sums of fourth powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(4+n)(-24 +20n +85n^2 +40n^3 +5n^4)/15120, {n, 30}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[24]^5]]]] (* or *) CoefficientList[Series[(1 +26x +66x^2 +26x^3 +x^4)/(1-x)^10, {x, 0, 30}], x]
    Nest[Accumulate,Range[30]^5,4] (* or *) LinearRecurrence[{10,-45,120, -210,252,-210,120,-45,10,-1}, {1,36,381,2336,10326,36552,110022,292512, 704847,1567852},30] (* Harvey P. Dale, May 08 2016 *)
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*(5*m^4 -35*m^2 +36)/126) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^10.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(-24 + 20*n + 85*n^2 + 40*n^3 + 5*n^4)/15120.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^5.

Extensions

Edited by Bruno Berselli, Feb 10 2015

A254682 Fifth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 37, 418, 2754, 13080, 49632, 159654, 452166, 1157013, 2724865, 5988268, 12410476, 24456744, 46132152, 83740980, 146935284, 250134753, 414416277, 669990046, 1059399550, 1641605680, 2497140360, 3734542890, 5498322570
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:  1, 37, 418, 2754, 13080, 49632, ...   (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 2 + 5 n + n^2) (9 + 10 n + 2 n^2)/60480, {n,24}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^11, {x,0,23}], x]
    Nest[Accumulate,Range[30]^5,5] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,37,418,2754,13080,49632,159654,452166,1157013,2724865,5988268},30] (* Harvey P. Dale, Jan 30 2019 *)
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-2+5*n+n^2)*(9+10*n+2*n^2)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(- 2 + 5*n + n^2)*(9 + 10*n + 2*n^2)/60480.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^5.
Sum_{n>=1} 1/a(n) = 475867/180 - (2560/13)*sqrt(7)*Pi*tan(sqrt(7)*Pi/2) + (210/13)*sqrt(3/11)*Pi*tan(sqrt(33)*Pi/2). - Amiram Eldar, Jan 27 2022

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254645 Fourth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 63, 665, 3367, 11529,  31031, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64, 729, 4096, 15625,  46656, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65, 794, 4890, 20515,  67171, ...  (A000540)
Second partial sums: 1, 66, 860, 5750, 26265,  93436, ...  (A101093)
Third partial sums:  1, 67, 927, 6677, 32942, 126378, ...  (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ...  (this sequence)
		

Crossrefs

Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
    CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
    Nest[Accumulate,Range[30]^6,4] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,68,995,7672,40614,166992,571626,1701480,4534959,11050468,24997973},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    vector(30, n, binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.

A254683 Fifth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 69, 1064, 8736, 49350, 216342, 787968, 2489448, 7024407, 18074875, 43072848, 96186272, 203145852, 408774588, 788378400, 1464523344, 2631173181, 4587701601, 7785938104, 12894168000, 20882898530, 33138238770
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ...  (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ...  (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ...  (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ...  (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ...  (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n,22}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x,0,21}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.
Showing 1-10 of 22 results. Next