A056665
Number of equivalence classes of n-valued Post functions of 1 variable under action of complementing group C(1,n).
Original entry on oeis.org
1, 3, 11, 70, 629, 7826, 117655, 2097684, 43046889, 1000010044, 25937424611, 743008623292, 23298085122493, 793714780783770, 29192926025492783, 1152921504875290696, 48661191875666868497, 2185911559749720272442, 104127350297911241532859
Offset: 1
The 11 necklaces for n=3 are (grouped by partition of 3): (RRR,GGG,BBB),(RRG,RGG, RRB,RBB, GGB,GBB), (RGB,RBG).
- D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, 7.2.1.1. Addison-Wesley, 2005.
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- M. A. Harrison and R. G. High, On the cycle index of a product of permutation groups, J. Combin. Theory, 4 (1968), 277-299.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 414 - 430, 1992.
- Index entries for sequences related to groups
Cf.
A075147 Aperiodic necklaces, a subset of this sequence.
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
-
with(numtheory):
a:= n-> add(phi(d)*n^(n/d), d=divisors(n))/n:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 18 2013
-
Table[Fold[ #1+EulerPhi[ #2] n^(n/#2)&, 0, Divisors[n]]/n, {n, 7}]
-
a(n) = sum(k=1,n,n^gcd(k,n)) / n; \\ Joerg Arndt, Mar 19 2017
-
# This algorithm counts all n-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime. It is algorithm F in Knuth 7.2.1.1.
def A056665_list(n):
C = []
for m in (1..n):
a = [0]*(n+1); a[0]=-1;
j = 1; count = 0
while(true):
if m%j == 0 : count += 1;
j = n
while a[j] >= m-1 : j -= 1
if j == 0 : break
a[j] += 1
for k in (j+1..n): a[k] = a[k-j]
C.append(count)
return C
-
def A056665(n): return sum(euler_phi(d)*n^(n//d)//n for d in divisors(n))
[A056665(n) for n in (1..18)] # Peter Luschny, Aug 12 2012
A081721
Number of bracelets of n beads in up to n colors.
Original entry on oeis.org
1, 3, 10, 55, 377, 4291, 60028, 1058058, 21552969, 500280022, 12969598086, 371514016094, 11649073935505, 396857785692525, 14596464294191704, 576460770691256356, 24330595997127372497, 1092955780817066765469, 52063675152021153895330, 2621440000054016000176044
Offset: 1
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Row sums of partition array
A213941.
-
Table[CycleIndex[DihedralGroup[n],s]/.Table[s[i]->n,{i,1,n}],{n,1,20}] (* Geoffrey Critzer, Jun 18 2013 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a[n_] := t[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
A275549
Number of classes of endofunctions of [n] under reversal.
Original entry on oeis.org
1, 1, 3, 18, 136, 1625, 23436, 412972, 8390656, 193739769, 5000050000, 142656721086, 4458051717120, 151437584670385, 5556003465485760, 218946946471875000, 9223372039002259456, 413620131002462320337, 19673204037747448432896, 989209827833222327690890
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Cf.
A078707 Endofunctions symmetric around their middle (stable by reversal).
A130293
Number of necklaces of n beads with up to n colors, with cyclic permutation {1,..,n} of the colors taken to be equivalent.
Original entry on oeis.org
1, 2, 5, 20, 129, 1316, 16813, 262284, 4783029, 100002024, 2357947701, 61917406672, 1792160394049, 56693913450992, 1946195068379933, 72057594071484456, 2862423051509815809, 121439531097819321972, 5480386857784802185957, 262144000000051200072048, 13248496640331026150086281
Offset: 1
The 5 necklaces for n=3 are: 000, 001, 002, 012 and 021.
Cf.
A000169: Classes under translation mod n.
Cf.
A056665: Classes under rotation.
Cf.
A168658: Classes under complement to n+1.
Cf.
A130293: Classes under translation and rotation.
Cf.
A081721: Classes under rotation and reversal.
Cf.
A275549: Classes under reversal.
Cf.
A275550: Classes under reversal and complement.
Cf.
A275551: Classes under translation and reversal.
Cf.
A275552: Classes under translation and complement.
Cf.
A275553: Classes under translation, complement and reversal.
Cf.
A275554: Classes under translation, rotation and complement.
Cf.
A275555: Classes under translation, rotation and reversal.
Cf.
A275556: Classes under translation, rotation, complement and reversal.
Cf.
A275557: Classes under rotation and complement.
Cf.
A275558: Classes under rotation, complement and reversal.
-
tor8={};ru8=Thread[ i_ ->Table[ Mod[i+k,8],{k,8}]];Do[idi=IntegerDigits[k,8,8];try= Function[w, First[temp=Union[Join @@(Table[RotateRight[w,k],{k,8}]/.#&)/@ ru8]]][idi];If[idi===try, tor8=Flatten[ {tor8,{{Length[temp],idi}}},1] ],{k,0,8^8-1}];
a[n_]:=Sum[d EulerPhi[d]n^(n/d),{d,Divisors[n]}]/n^2; Array[a,21] (* Stefano Spezia, May 21 2024 *)
-
a(n) = sumdiv(n, d, d*eulerphi(d)*n^(n/d))/n^2; \\ Michel Marcus, Aug 05 2016
A275558
Number of classes of endofunctions of [n] under rotation, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 6, 31, 195, 2182, 30100, 529674, 10778125, 250155012, 6484839306, 185757443582, 5824538174455, 198428907905336, 7298232189810696, 288230385949610020, 12165298000307625609, 546477890436083284338, 26031837576091248872110, 1310720000028416000168044
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
A275551
Number of classes of endofunctions of [n] under vertical translation mod n and reversal.
Original entry on oeis.org
1, 1, 2, 6, 36, 325, 3924, 58996, 1049088, 21526641, 500010000, 12968792826, 371504434176, 11649044974645, 396857394156608, 14596463098125000, 576460752571858944, 24330595941321312961, 1092955779880368226560, 52063675149116964615310, 2621440000000512000000000
Offset: 0
a(2) = 2: 11, 12.
a(3) = 6: 111, 112, 113, 121, 123, 131.
a(4) = 36: 1111, 1112, 1113, 1114, 1121, 1122, 1123, 1124, 1131, 1132, 1133, 1134, 1141, 1142, 1143, 1212, 1213, 1214, 1221, 1223, 1224, 1231, 1234, 1241, 1242, 1243, 1312, 1313, 1323, 1324, 1331, 1334, 1341, 1412, 1423, 1441.
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275552
Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.
Original entry on oeis.org
1, 1, 2, 5, 36, 313, 3904, 58825, 1048640, 21523361, 500000256, 12968712301, 371504186368, 11649042561241, 396857386631168, 14596463012695313, 576460752303439872, 24330595937833434241, 1092955779869348331520, 52063675148955620766421, 2621440000000000000262144
Offset: 0
Cf.
A000169 Classes under translation mod n;
Cf.
A056665 Classes under rotation;
Cf.
A168658 Classes under complement to n+1;
Cf.
A130293 Classes under translation and rotation;
Cf.
A081721 Classes under rotation and reversal;
Cf.
A275549 Classes under reversal;
Cf.
A275550 Classes under reversal and complement;
Cf.
A275551 Classes under translation and reversal;
Cf.
A275553 Classes under translation, complement and reversal;
Cf.
A275554 Classes under translation, rotation and complement;
Cf.
A275555 Classes under translation, rotation and reversal;
Cf.
A275556 Classes under translation, rotation, complement and reversal;
Cf.
A275557 Classes under rotation and complement;
Cf.
A275558 Classes under rotation, complement and reversal.
-
a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 07 2017, translated from PARI *)
-
a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ Andrew Howroyd, Sep 30 2017
A275553
Number of classes of endofunctions of [n] under vertical translation mod n, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 4, 24, 169, 2024, 29584, 525600, 10764961, 250030128, 6484436676, 185752964096, 5824523694025, 198428723433728, 7298231591777344, 288230377359679488, 12165297972404595841, 546477889989773968640, 26031837574639154232100, 1310720000002816000131072
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275554
Number of classes of endofunctions of [n] under vertical translation mod n, rotation and complement to n+1.
Original entry on oeis.org
1, 1, 2, 3, 14, 65, 680, 8407, 131416, 2391515, 50006040, 1178973851, 30958827996, 896080197025, 28346960490560, 973097534189967, 36028797169965112, 1431211525754907905, 60719765554419645244, 2740193428892401092979, 131072000000281600209176
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275555
Number of classes of endofunctions of [n] under vertical translation mod n, rotation and reversal.
Original entry on oeis.org
1, 1, 2, 4, 16, 77, 730, 8578, 132422, 2394795, 50031012, 1179054376, 30959574248, 896082610429, 28346986843640, 973097619619654, 36028798243701780, 1431211529242786625, 60719765604009463866, 2740193429053744941868, 131072000002841600036024
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Showing 1-10 of 13 results.
Comments