A000312
a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).
Original entry on oeis.org
1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979
Offset: 0
G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 62, 63, 87.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 173, #39.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Kenny Lau, Table of n, a(n) for n = 0..385 [First 100 terms computed by T. D. Noe]
- Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
- Arthur T. Benjamin and Fritz Juhnke, Another way of counting n^n, SIAM J. Discrete Math., Vol. 5, No. 3 (1992), pp. 377-379. - _N. J. A. Sloane_, Jun 09 2011
- H. Bottomley, Illustration of initial terms.
- H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, The Mathematical Intelligencer, Vol. 20 (4), 1998, pp. 25-29. (Sequence appears as formula in Eq. (8))
- C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 34.
- Frank Ellermann, Illustration of binomial transforms.
- José María Grau and Antonio M. Oller-Marcén, On the last digit and the last non-zero digit of n^n in base b, Bulletin of the Korean Mathematical Society, Vol. 51, No. 5 (2014), pp. 1325-1337; arXiv preprint, arXiv:1203.4066 [math.NT], 2012.
- Nick Hobson, Solution to puzzle 48: Exponential equation.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 36.
- Steven J. Miller (ed.), Exercises to "The Theory and Applications of Benford's Law", Princeton University Press, 2015.
- Mustafa Obaid et al., The number of complete exceptional sequences for a Dynkin algebra, arXiv preprint arXiv:1307.7573 [math.RT], 2013.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- E. Vigren (Proposer), Problem 12432, Amer. Math. Monthly 130 (2023), p. 953.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
- Eric Weisstein's World of Mathematics, Hadamard's Maximum Determinant Problem.
- Eric Weisstein's World of Mathematics, Hankel Matrix.
- Dimitri Zvonkine, An algebra of power series..., arXiv:math/0403092 [math.AG], 2004.
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to Benford's law
Cf.
A000107,
A000169,
A000272,
A001372,
A007778,
A007830,
A008785-
A008791,
A019538,
A048993,
A008279,
A085741,
A062206,
A212333.
-
a000312 n = n ^ n
a000312_list = zipWith (^) [0..] [0..] -- Reinhard Zumkeller, Jul 07 2012
-
A000312 := n->n^n: seq(A000312(n), n=0..17);
-
Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *)
a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
-
A000312[n]:=if n=0 then 1 else n^n$
makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
{a(n) = n^n};
-
is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
-
{a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
-
def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022
A000169
Number of labeled rooted trees with n nodes: n^(n-1).
Original entry on oeis.org
1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841, 5242880000000000000000000
Offset: 1
For n=3, a(3)=9 because there are exactly 9 binary relations on A={1, 2} that are functions, namely: {}, {(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,1)} and {(1,2),(2,2)}. - _Dennis P. Walsh_, Apr 21 2011
G.f. = x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 + 117649*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 169.
- Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
- Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppnen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 63.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2, and p. 37, (5.52).
- N. J. A. Sloane, Table of n, a(n) for n = 1..100
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
- Washington Bomfim, Bijection between rooted forests and multigraphs without cycles except one loop in each connected component. [From _Washington Bomfim_, Sep 04 2010]
- David Callan, A Combinatorial Derivation of the Number of Labeled Forests, J. Integer Seqs., Vol. 6, 2003.
- Peter J. Cameron and Philippe Cara, Independent generating sets and geometries for symmetric groups, J. Algebra, Vol. 258, no. 2 (2002), 641-650.
- Robert Castelo and Arno Siebes, A characterization of moral transitive directed acyclic graph Markov models as trees, Technical Report CS-2000-44, Faculty of Computer Science, University of Utrecht.
- Robert Castelo and Arno Siebes, A characterization of moral transitive acyclic directed graph Markov models as labeled trees, Journal of Statistical Planning and Inference, Vol. 115, No. 1 (2003), pp. 235-259; alternative link.
- Frédéric Chapoton, Florent Hivert and Jean-Christophe Novelli, A set-operad of formal fractions and dendriform-like sub-operads, Journal of Algebra, Vol. 465 (2016), pp. 322-355; arXiv preprint, arXiv:1307.0092 [math.CO], 2013.
- Ali Chouria, Vlad-Florin Drǎgoi, Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, VOl. 5 (1996), pp. 329-359; alternative link.
- Nick Hobson, Solution to puzzle 48: Exponential equation.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 67.
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
- Jean-Louis Loday and Bruno Vallette, Algebraic Operads, version 0.99, 2012.
- G. Pólya, With, or Without, Motivation?, Amer. Math. Monthly, Vol. 56, No. 10 (1949), pp. 684-691. Reprinted in "A Century of Mathematics", John Ewing (ed.), Math. Assoc. of Amer., 1994, pp. 195-200 (the reference there is wrong).
- Gwenaël Richomme, Characterization of infinite LSP words and endomorphisms preserving the LSP property, International Journal of Foundations of Computer Science, Vol. 30, No. 1 (2019), pp. 171-196; arXiv preprint, arXiv:1808.02680 [cs.DM], 2018.
- Marko Riedel, math.stackexchange.com, Proof of an identity relating the tree function T(z) and the second order Eulerian numbers. Feb. 28, 2021.
- Marko Riedel, math.stackexchange.com, Asymptotics of tree function statistics using Pusieux series
- Frank Ruskey, Information on Rooted Trees.
- N. J. A. Sloane, Illustration of initial terms
- Zhi-Wei Sun, Fedor Petrov, A surprising identity, discussion in MathOverflow, Jan 17 2019.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
- Eric Weisstein's World of Mathematics, Graph Vertex.
- Dimitri Zvonkine, An algebra of power series arising in the intersection theory of moduli spaces of curves and in the enumeration of ramified coverings of the sphere, arXiv:math/0403092 [math.AG], 2004.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
Cf.
A000055,
A000081,
A000142,
A000272,
A000312,
A002720,
A007778,
A007830,
A008785-
A008791,
A055860,
A002061,
A052746,
A052756,
A052764,
A052789,
A051129,
A098686,
A247363,
A055302,
A248120,
A130293,
A053506-
A053509,
A262974.
-
a000169 n = n ^ (n - 1) -- Reinhard Zumkeller, Sep 14 2014
-
[n^(n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2015
-
A000169 := n -> n^(n-1);
# second program:
spec := [A, {A=Prod(Z, Set(A))}, labeled]; [seq(combstruct[count](spec, size=n), n=1..20)];
# third program:
A000169 := n -> add((-1)^(n+k-1)*pochhammer(n, k)*Stirling2(n-1, k), k = 0..n-1):
seq(A000169(n), n = 1 .. 23); # Mélika Tebni, May 07 2023
-
Table[n^(n - 1), {n, 1, 20}] (* Stefan Steinerberger, Apr 01 2006 *)
Range[0, 18]! CoefficientList[ Series[ -LambertW[-x], {x, 0, 18}], x] // Rest (* Robert G. Wilson v, updated by Jean-François Alcover, Oct 14 2019 *)
(* Next, a signed version A000169 from the Vandermonde determinant of (1,1/2,...,1/n) *)
f[j_] := 1/j; z = 12;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}]
1/% (* A203421 *)
Table[v[n]/v[n + 1], {n, 1, z - 1}] (* A000169 signed *)
(* Clark Kimberling, Jan 02 2012 *)
a[n_]:=Det[Table[If[i==0,1,If[i<=j,i,i-n]],{i,0,n-1},{j,0,n-1}]]; Array[a,20] (* Stefano Spezia, Mar 12 2024 *)
-
n^(n-1) $ n=1..20 /* Zerinvary Lajos, Apr 01 2007 */
-
a(n) = n^(n-1)
-
def a(n): return n**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Sep 19 2021
-
from sympy import Matrix
def P(n): return [[ (i-n if i > j else i) + (i == 0) for j in range(n) ] for i in range(n)]
print(*(Matrix(P(n)).det() for n in range(1, 21)), sep=', ') # C.S. Elder, Mar 12 2024
A056665
Number of equivalence classes of n-valued Post functions of 1 variable under action of complementing group C(1,n).
Original entry on oeis.org
1, 3, 11, 70, 629, 7826, 117655, 2097684, 43046889, 1000010044, 25937424611, 743008623292, 23298085122493, 793714780783770, 29192926025492783, 1152921504875290696, 48661191875666868497, 2185911559749720272442, 104127350297911241532859
Offset: 1
The 11 necklaces for n=3 are (grouped by partition of 3): (RRR,GGG,BBB),(RRG,RGG, RRB,RBB, GGB,GBB), (RGB,RBG).
- D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, 7.2.1.1. Addison-Wesley, 2005.
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- M. A. Harrison and R. G. High, On the cycle index of a product of permutation groups, J. Combin. Theory, 4 (1968), 277-299.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 414 - 430, 1992.
- Index entries for sequences related to groups
Cf.
A075147 Aperiodic necklaces, a subset of this sequence.
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
-
with(numtheory):
a:= n-> add(phi(d)*n^(n/d), d=divisors(n))/n:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 18 2013
-
Table[Fold[ #1+EulerPhi[ #2] n^(n/#2)&, 0, Divisors[n]]/n, {n, 7}]
-
a(n) = sum(k=1,n,n^gcd(k,n)) / n; \\ Joerg Arndt, Mar 19 2017
-
# This algorithm counts all n-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime. It is algorithm F in Knuth 7.2.1.1.
def A056665_list(n):
C = []
for m in (1..n):
a = [0]*(n+1); a[0]=-1;
j = 1; count = 0
while(true):
if m%j == 0 : count += 1;
j = n
while a[j] >= m-1 : j -= 1
if j == 0 : break
a[j] += 1
for k in (j+1..n): a[k] = a[k-j]
C.append(count)
return C
-
def A056665(n): return sum(euler_phi(d)*n^(n//d)//n for d in divisors(n))
[A056665(n) for n in (1..18)] # Peter Luschny, Aug 12 2012
A081721
Number of bracelets of n beads in up to n colors.
Original entry on oeis.org
1, 3, 10, 55, 377, 4291, 60028, 1058058, 21552969, 500280022, 12969598086, 371514016094, 11649073935505, 396857785692525, 14596464294191704, 576460770691256356, 24330595997127372497, 1092955780817066765469, 52063675152021153895330, 2621440000054016000176044
Offset: 1
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Row sums of partition array
A213941.
-
Table[CycleIndex[DihedralGroup[n],s]/.Table[s[i]->n,{i,1,n}],{n,1,20}] (* Geoffrey Critzer, Jun 18 2013 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a[n_] := t[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
A275549
Number of classes of endofunctions of [n] under reversal.
Original entry on oeis.org
1, 1, 3, 18, 136, 1625, 23436, 412972, 8390656, 193739769, 5000050000, 142656721086, 4458051717120, 151437584670385, 5556003465485760, 218946946471875000, 9223372039002259456, 413620131002462320337, 19673204037747448432896, 989209827833222327690890
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Cf.
A078707 Endofunctions symmetric around their middle (stable by reversal).
A130293
Number of necklaces of n beads with up to n colors, with cyclic permutation {1,..,n} of the colors taken to be equivalent.
Original entry on oeis.org
1, 2, 5, 20, 129, 1316, 16813, 262284, 4783029, 100002024, 2357947701, 61917406672, 1792160394049, 56693913450992, 1946195068379933, 72057594071484456, 2862423051509815809, 121439531097819321972, 5480386857784802185957, 262144000000051200072048, 13248496640331026150086281
Offset: 1
The 5 necklaces for n=3 are: 000, 001, 002, 012 and 021.
Cf.
A000169: Classes under translation mod n.
Cf.
A056665: Classes under rotation.
Cf.
A168658: Classes under complement to n+1.
Cf.
A130293: Classes under translation and rotation.
Cf.
A081721: Classes under rotation and reversal.
Cf.
A275549: Classes under reversal.
Cf.
A275550: Classes under reversal and complement.
Cf.
A275551: Classes under translation and reversal.
Cf.
A275552: Classes under translation and complement.
Cf.
A275553: Classes under translation, complement and reversal.
Cf.
A275554: Classes under translation, rotation and complement.
Cf.
A275555: Classes under translation, rotation and reversal.
Cf.
A275556: Classes under translation, rotation, complement and reversal.
Cf.
A275557: Classes under rotation and complement.
Cf.
A275558: Classes under rotation, complement and reversal.
-
tor8={};ru8=Thread[ i_ ->Table[ Mod[i+k,8],{k,8}]];Do[idi=IntegerDigits[k,8,8];try= Function[w, First[temp=Union[Join @@(Table[RotateRight[w,k],{k,8}]/.#&)/@ ru8]]][idi];If[idi===try, tor8=Flatten[ {tor8,{{Length[temp],idi}}},1] ],{k,0,8^8-1}];
a[n_]:=Sum[d EulerPhi[d]n^(n/d),{d,Divisors[n]}]/n^2; Array[a,21] (* Stefano Spezia, May 21 2024 *)
-
a(n) = sumdiv(n, d, d*eulerphi(d)*n^(n/d))/n^2; \\ Michel Marcus, Aug 05 2016
A275550
Number of classes of endofunctions of [n] under reversal and complement to n+1.
Original entry on oeis.org
1, 1, 2, 10, 72, 819, 11772, 206572, 4196352, 96871525, 2500050000, 71328400806, 2229026605056, 75718793541895, 2778001759096256, 109473473278652344, 4611686020574871552, 206810065502975099529
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Cf.
A192396 floor(((k+1)^n-(1+(-1)^k)/2)/2)
-
Table[1/8 (1+(-1)^(1+n)+2 n^n+n^Floor[n/2] (3+(-1)^(n+1) (-1+n)+n)),{n,1,17}]
-
a(n) = (1+(-1)^(n+1)+2*n^n+(3+((-1)^(n+1))*(n-1)+n)*n^(floor(n/2)) )/8; \\ Andrew Howroyd, Sep 30 2017
A275551
Number of classes of endofunctions of [n] under vertical translation mod n and reversal.
Original entry on oeis.org
1, 1, 2, 6, 36, 325, 3924, 58996, 1049088, 21526641, 500010000, 12968792826, 371504434176, 11649044974645, 396857394156608, 14596463098125000, 576460752571858944, 24330595941321312961, 1092955779880368226560, 52063675149116964615310, 2621440000000512000000000
Offset: 0
a(2) = 2: 11, 12.
a(3) = 6: 111, 112, 113, 121, 123, 131.
a(4) = 36: 1111, 1112, 1113, 1114, 1121, 1122, 1123, 1124, 1131, 1132, 1133, 1134, 1141, 1142, 1143, 1212, 1213, 1214, 1221, 1223, 1224, 1231, 1234, 1241, 1242, 1243, 1312, 1313, 1323, 1324, 1331, 1334, 1341, 1412, 1423, 1441.
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275552
Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.
Original entry on oeis.org
1, 1, 2, 5, 36, 313, 3904, 58825, 1048640, 21523361, 500000256, 12968712301, 371504186368, 11649042561241, 396857386631168, 14596463012695313, 576460752303439872, 24330595937833434241, 1092955779869348331520, 52063675148955620766421, 2621440000000000000262144
Offset: 0
Cf.
A000169 Classes under translation mod n;
Cf.
A056665 Classes under rotation;
Cf.
A168658 Classes under complement to n+1;
Cf.
A130293 Classes under translation and rotation;
Cf.
A081721 Classes under rotation and reversal;
Cf.
A275549 Classes under reversal;
Cf.
A275550 Classes under reversal and complement;
Cf.
A275551 Classes under translation and reversal;
Cf.
A275553 Classes under translation, complement and reversal;
Cf.
A275554 Classes under translation, rotation and complement;
Cf.
A275555 Classes under translation, rotation and reversal;
Cf.
A275556 Classes under translation, rotation, complement and reversal;
Cf.
A275557 Classes under rotation and complement;
Cf.
A275558 Classes under rotation, complement and reversal.
-
a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 07 2017, translated from PARI *)
-
a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ Andrew Howroyd, Sep 30 2017
A275553
Number of classes of endofunctions of [n] under vertical translation mod n, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 4, 24, 169, 2024, 29584, 525600, 10764961, 250030128, 6484436676, 185752964096, 5824523694025, 198428723433728, 7298231591777344, 288230377359679488, 12165297972404595841, 546477889989773968640, 26031837574639154232100, 1310720000002816000131072
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Showing 1-10 of 14 results.
Comments