cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A036563 a(n) = 2^n - 3.

Original entry on oeis.org

-2, -1, 1, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the n-th number with exactly n 1's in binary representation. - Reinhard Zumkeller, Mar 06 2003
Berstein and Onn: "For every m = 3k+1, the Graver complexity of the vertex-edge incidence matrix of the complete bipirtite graph K(3,m) satisfies g(m) >= 2^(k+2)-3." - Jonathan Vos Post, Sep 15 2007
Row sums of triangle A135857. - Gary W. Adamson, Dec 01 2007
a(n) = A164874(n-1,n-2) for n > 2. - Reinhard Zumkeller, Aug 29 2009
Starting (1, 5, 13, ...) = eigensequence of a triangle with A016777: (1, 4, 7, 10, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 186, leads to this sequence (n >= 2). For the corner squares this vector leads to the companion sequence A123203. - Johannes W. Meijer, Aug 15 2010
First differences of A095264: A095264(n+1) - A095264(n) = a(n+2). - J. M. Bergot, May 13 2013
a(n+2) is given by the sum of n-th row of triangle of powers of 2: 1; 2 1 2; 4 2 1 2 4; 8 4 2 1 2 4 8; ... - Philippe Deléham, Feb 24 2014
Also, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508. - Robert Price, Mar 09 2017
a(n+3) is the value of the Ackermann function A(3,n) or ack(3,n). - Olivier Gérard, May 11 2018

Examples

			a(2) = 1;
a(3) = 2 + 1 + 2 = 5;
a(4) = 4 + 2 + 1 + 2 + 4 = 13;
a(5) = 8 + 4 + 2 + 1 + 2 + 4 + 8 = 29; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Row sums of triangular array A027960. A column of A119725.

Programs

Formula

a(n) = 2*a(n-1) + 3.
The sequence 1, 5, 13, ... has a(n) = 4*2^n-3. These are the partial sums of A151821. - Paul Barry, Aug 25 2003
a(n) = A118654(n-3, 6), for n > 2. - N. J. A. Sloane, Sep 29 2006
Row sums of triangle A130459 starting (1, 5, 13, 29, 61, ...). - Gary W. Adamson, May 26 2007
Row sums of triangle A131112. - Gary W. Adamson, Jun 15 2007
Binomial transform of [1, 4, 4, 4, ...] = (1, 5, 13, 29, 61, ...). - Gary W. Adamson, Sep 20 2007
a(n) = 2*StirlingS2(n,2) - 1, for n > 0. - Ross La Haye, Jul 05 2008
a(n) = A000079(n) - 3. - Omar E. Pol, Dec 21 2008
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-2*x) - 3/(1-x).
E.g.f.: exp(2*x) - 3*exp(x). (End)
For n >= 3, a(n) = 2<+>n, where operation <+> is defined in A206853. - Vladimir Shevelev, Feb 17 2012
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1, a(0)=-2, a(1)=-1. - Philippe Deléham, Dec 23 2013
Sum_{n>=1} 1/a(n) = A331372. - Amiram Eldar, Nov 18 2020

A153893 a(n) = 3*2^n - 1.

Original entry on oeis.org

2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471
Offset: 0

Views

Author

Keywords

Comments

A020944(a(n)) = 0. - Reinhard Zumkeller, Mar 13 2011
a(n) + a(n-1)^2 is a perfect square. - Vincenzo Librandi, Oct 28 2011
Number of distinct continued fractions of n terms chosen from {1,2}. - Clark Kimberling, Jul 20 2015
Also, the decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508. - Robert Price, Mar 09 2017
This sequence has been used by the ninth-century mathematician Thabit ibn Qurra to devise the first method to construct amicable pairs (see Tattersall). - Stefano Spezia, Jul 18 2025

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 138.

Crossrefs

Cf. A283508.

Programs

Formula

a(n) = a(n-1)*2 + 1, a(0)=2.
a(n) = A083329(n+1).
a(n) = A055010(n+1).
G.f.: (2 - x)/((1-x)(1-2x)). - R. J. Mathar, Feb 13 2009
a(n) = A083416(2n) = A033484(n) + 1. - Philippe Deléham, Apr 14 2013
From G. C. Greubel, Sep 01 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 3*exp(2*x) - exp(x). (End)

Extensions

Edited by N. J. A. Sloane, Feb 14 2009

A306593 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 334, 65, 42, 76, 455, 41, 40, 98, 123, 667, 64, 52, 778, 788, 51, 50, 899, 63, 86, 7787, 2025885, 8788, 62, 74, 46996, 61, 60, 66898, 67997, 85, 73, 78998, 88899, 88999, 335, 72, 4579975, 878888, 71, 70, 10243, 5354, 355, 989999, 114
Offset: 0

Views

Author

Paolo P. Lava, Feb 27 2019

Keywords

Comments

Here only the least numbers are listed: e.g., a(75) = 1031, even if 10002110 also produces 75.
The sequence is infinite because any number of the form (91*10^n - 10) / 90 for n > 0 (A267623 or A283508) has the determinant of the circulant matrix equal to n but, in general, it is not the least possible term. - Giovanni Resta, Mar 06 2019

Examples

			                        | 3 3 4 |
a(10) = 334 because det | 4 3 3 | = 10
                        | 3 4 3 |
.
and 334 is the least number to have this property.
.
                          | 4 6 9 9 6 |
                          | 6 4 6 9 9 |
a(34) = 46996 because det | 9 6 4 6 9 | = 34
                          | 9 9 6 4 6 |
                          | 6 9 9 6 4 |
.
and 46996 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,j,k,i,n,t;
    print(0); for i from 1 to q do for n from 1 to q do
    d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[];
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
    for k from 2 to d do b:=[op([]), c[nops(c)]];
    for j from 1 to nops(c)-1 do
    b:=[op(b), c[j]]; od;  c:=b; t:=[op(t), c]; od;
    if i=det(t) then print(n); break; fi; od; od; end: P(10^7);
  • PARI
    md(n) = my(d = if (n, digits(n), [0])); matdet(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));
    a(n) = my(k=0); while(md(k) != n, k++); k; \\ Michel Marcus, Mar 20 2019

Formula

A177894(a(n)) = n when a(n) >= 0. - Rémy Sigrist, Feb 27 2019

A267623 Binary representation of the middle column of the "Rule 187" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 101, 1011, 10111, 101111, 1011111, 10111111, 101111111, 1011111111, 10111111111, 101111111111, 1011111111111, 10111111111111, 101111111111111, 1011111111111111, 10111111111111111, 101111111111111111, 1011111111111111111, 10111111111111111111
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

Comments

Also, The binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Maple
    # Rule 187: value in generation r and column c, where c=0 is the central one
    r187 := proc(r::integer,c::integer)
        option remember;
        local up ;
        if r = 0 then
            if c = 0 then
                1;
            else
                0;
            end if;
        else
            # previous 3 bits
            [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ;
            up := op(3,%)+2*op(2,%)+4*op(1,%) ;
            # rule 187 = 10111011_2: {6,2}->0, all others ->1
            if up in {6,2} then
                0;
            else
                1 ;
            end if;
        end if;
    end proc:
    A267623 := proc(n)
        b := [seq(r187(r,0),r=0..n)] ;
        add(op(-i,b)*2^(i-1),i=1..nops(b)) ;
        A007088(%) ;
    end proc:
    smax := 30 ;
    L := [seq(A267623(n),n=0..smax)] ; # R. J. Mathar, Apr 12 2019
  • Mathematica
    rule=187; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 19 2016 and Apr 16 2019: (Start)
a(n) = 11*a(n-1)-10*a(n-2) for n>2.
G.f.: (1-x+x^2) / ((1-x)*(1-10*x)).
(End)
Empirical: a(n) = (91*10^n - 10) / 90 for n>0. - Colin Barker, Mar 10 2017
It also appears that a(n) = floor(91*10^n/90). - Karl V. Keller, Jr., May 28 2022

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022

A290112 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 101, 1011, 10111, 101111, 1011111, 10111111, 101111111, 1011111111, 10111111111, 101111111111, 1011111111111, 10111111111111, 101111111111111, 1011111111111111, 10111111111111111, 101111111111111111, 1011111111111111111, 10111111111111111111
Offset: 0

Views

Author

Robert Price, Jul 19 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 643; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

From Chai Wah Wu, Apr 02 2024: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 3.
G.f.: (10*x^3 - 10*x^2 + 1)/((x - 1)*(10*x - 1)). (End)
Showing 1-5 of 5 results.