cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 3902 results. Next

A096162 Let n be a number partitioned as n = b_1 + 2*b_2 + ... + n*b_n; then T(n) = (b_1)! * (b_2)! * ... (b_n)!. Irregular triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 1, 1, 2, 2, 24, 1, 1, 1, 2, 2, 6, 120, 1, 1, 1, 2, 2, 1, 6, 6, 4, 24, 720, 1, 1, 1, 1, 2, 1, 2, 2, 6, 2, 6, 24, 12, 120, 5040, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 6, 2, 4, 2, 24, 24, 6, 12, 120, 48, 720, 40320, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 6, 6, 2, 2, 2, 2, 6, 24, 6, 12, 4, 24, 120
Offset: 1

Views

Author

Alford Arnold, Jun 20 2004

Keywords

Comments

The partitions of number n are grouped by increasing length and in reverse lexical order for partitions of the same length.
This sequence is in the Abramowitz-Stegun ordering, see A036036. - Hartmut F. W. Hoft, Apr 25 2015

Examples

			Illustrating the formula:
1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3  6  1 ... A036040
so
1 1 2 1 1 6 1 1 2  2 24 ... this sequence.
.
From _Hartmut F. W. Hoft_, Apr 25 2015: (Start)
The sequence as a structured triangle. The column headings indicate the number of elements in the underlying partitions. Brackets indicate groups of the products of factorials for all partitions of the same length when there is more than one partition.
     1   2        3        4     5    6
1:   1
2:   1   2
3:   1   1        6
4:   1  [1 2]     2       24
5:   1  [1 1]    [2 2]     6    120
6:   1  [1 1 2]  [2 1 6]  [6 4]  24  720
The partitions, their multiplicities and factorial products associated with the five entries in row n = 4 are:
partitions:         {4}, [{3, 1}, {2, 2}], {2, 1, 1}, {1, 1, 1, 1}
multiplicities:      1,  [{1, 1},  2],     {1, 2},     4
factorial products:  1!, [1!*1!, 2!],      1!*2!,      4!
(End)
		

References

  • Abramowitz and Stegun, Handbook of Mathematical Functions, p. 831, column "M_1" divided by "M_3."

Crossrefs

Row sums in A096161.
Row lengths in A000041.

Programs

  • Mathematica
    (* function a096162[ ] computes complete rows of the triangle *)
    row[n_] := Map[Apply[Times, Map[Factorial, Last[Transpose[Tally[#]]]]]&, GatherBy[IntegerPartitions[n], Length], {2}]
    triangle[n_] := Map[row, Range[n]]
    a096162[n_] := Flatten[triangle[n]]
    Take[a096162[9],90] (* data *)  (*Hartmut F. W. Hoft, Apr 25 2015 *)
  • SageMath
    from collections import Counter
    def A096162_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [h(p) for k in (0..n) for p in Partitions(n, length=k)]
    for n in (1..9): print(A096162_row(n)) # Peter Luschny, Nov 01 2019

Formula

T(n, k) = A036038(n,k) / A036040(n,k).
Appears to be n! / A130561(n); e.g., 4! / (24,24,12,12,1) = (1,1,2,2,24). - Tom Copeland, Nov 12 2017

Extensions

Edited and extended by Christian G. Bower, Jan 17 2006

A174065 Convolved with its aerated variant = A000041.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 25, 31, 38, 48, 60, 73, 89, 109, 133, 161, 193, 232, 279, 333, 395, 470, 558, 658, 775, 912, 1071, 1254, 1464, 1708, 1991, 2313, 2681, 3107, 3595, 4149, 4782, 5506, 6331, 7268, 8330, 9538, 10912, 12462, 14213, 16199
Offset: 0

Views

Author

Gary W. Adamson, Mar 06 2010

Keywords

Comments

A000041 = (1, 1, 2, 3, 5, 7, ...) = (1, 1, 1, 2, 3, 4, 5, 7, ...) * (1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 7, 0, 9, 0, ...).
The sequence diverges from A100853 after 16 terms; and is a conjectured Euler transform of A035263: (1, 0, 1, 1, 1, 0, 1, 0, 1, ...).

Examples

			Heading at top, with triangle A174066 underneath (the generator for A174065):
1, 1, 1, 2, 3, 4,.... = heading
1;................... = 1
1;................... = 1
1, 1;................ = 2
2, 1;................ = 3
3, 1, 1;............. = 5
4, 2, 1;............. = 7
5, 3, 1, 2;.......... = 11
7, 4, 2, 2;.......... = 15
9, 5, 3, 2, 3;....... = 22
...
... where terms in the left column are the result of the two rules: multiply heading * left column, and row sums = partition numbers.
Thus leftmost term in column 8 must be 7 = 15 - (4 + 2 + 2). Then the 7 is placed in its spot in the left column and as the next heading term.
		

Crossrefs

Programs

  • Maple
    p:= combinat[numbpart]:
    a:= proc(n) option remember; `if`(n=0, 1, p(n)-add(a(j)*
          `if`(irem(n-j, 2, 'r')=1, 0, a(r)), j=0..n-1))
        end:
    seq(a(n), n=0..61);  # Alois P. Heinz, Jul 27 2019
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[QPochhammer[-1, x^(4^j)]/2, {j, 0, Log[nmax]/Log[4]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)

Formula

Aerate and convolve sequences are generated by triangles (in this case A174066) in which ongoing terms are placed in the left column and at the top as a heading. Columns >1 are shifted down k times (k=2) in this case corresponding to (k-1) interpolated zeros. Next term in left column = n-th term in the "target sequence" S(n) (in this case A000041) minus (sum of terms in n-th row for columns >1). Place the latter term in the heading filling in missing terms.
G.f.: Product_{i>=1, j>=0} (1 + x^(i*4^j)). - Ilya Gutkovskiy, Sep 23 2019
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2^(11/8) * 3^(3/4) * n^(7/8)). - Vaclav Kotesovec, Sep 24 2019
From Seiichi Manyama, May 31 2024: (Start)
G.f.: Product_{k>=1} (1 + x^k)^(valuation(k,4) + 1).
Let A(x) be the g.f. of this sequence, and B(x) be the g.f. of A000009, then B(x) = A(x)/A(x^4). (End)

Extensions

More terms from R. J. Mathar, Mar 18 2010
Offset corrected by Alois P. Heinz, Jul 27 2019

A211009 Triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of j in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j), 1<=k<=A141285(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 2, 7, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 15, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 7, 22
Offset: 1

Views

Author

Omar E. Pol, Oct 21 2012

Keywords

Comments

Also the finite sequence a(1)..a(r), where a(r) is a record in the sequence, is also a finite triangle read by rows: T(n,k) = number of cells in the k-column of the n-th region of the integer whose number of partitions is equal to a(r).
T(n,k) is also 1 plus the number of holes between T(n,k) and the previous member in the column k of triangle.
T(n,k) is also the height of the column mentioned in the definition, in a three-dimensional model of the set of partitions of j, in which the regions appear rotated 90 degrees and where the pivots are the largest part of every region (see A141285). For the definition of "region" see A206437. - Omar E. Pol, Feb 06 2014

Examples

			The irregular triangle begins:
1;
1, 2;
1, 1, 3;
1, 1;
1, 1, 2, 5;
1, 1, 1;
1, 1, 1, 2, 7;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 11;
1, 1, 1;
1, 1, 1, 2, 2;
1, 1, 1, 1;
1, 1, 1, 1, 2, 4, 15;
1, 1;
1, 1, 2, 2;
1, 1, 1;
1, 1, 1, 2, 4, 4;
1, 1, 1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 2, 3, 7, 22;
...
From _Omar E. Pol_, Feb 06 2014: (Start)
Illustration of initial terms:
.    _
.   |_|
.    1
.      _
.    _|_|
.   |_ _|
.    1 2
.        _
.       |_|
.    _ _|_|
.   |_ _ _|
.    1 1 3
.    _ _
.   |_ _|
.    1 1
.          _
.         |_|
.         |_|
.        _|_|
.    _ _|_ _|
.   |_ _ _ _|
.    1 1 2 5
.
(End)
		

Crossrefs

Records give positive terms of A000041. Row n has length A141285(n). Row sums give A186412.

Extensions

Better definition from Omar E. Pol, Feb 06 2014

A234569 Primes p with P(p-1) also prime, where P(.) is the partition function (A000041).

Original entry on oeis.org

3, 5, 7, 37, 367, 499, 547, 659, 1087, 1297, 1579, 2137, 2503, 3169, 3343, 4457, 4663, 5003, 7459, 9293, 16249, 23203, 34667, 39971, 41381, 56383, 61751, 62987, 72661, 77213, 79697, 98893, 101771, 127081, 136193, 188843, 193811, 259627, 267187, 282913, 315467, 320563, 345923, 354833, 459029, 482837, 496477, 548039, 641419, 647189
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 28 2013

Keywords

Comments

By the conjecture in A234567, this sequence should have infinitely many terms. It seems that a(n+1) < a(n) + a(n-1) for all n > 5.
The b-file lists all terms not exceeding the 500000th prime 7368787. Note that P(a(113)-1) is a prime having 2999 decimal digits.
See also A234572 for primes of the form P(p-1) with p prime.

Examples

			a(1) = 3 since P(2-1) = 1 is not prime, but P(3-1) = 2 is prime.
a(2) = 5 since P(5-1) = 5 is prime.
a(3) = 7 since P(7-1) = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[PartitionsP[Prime[k]-1]],n=n+1;Print[n," ",Prime[k]]],{k,1,10^6}]

A238457 a(n) = |{0 < k <= n: p(n) + k is prime}|, where p(.) is the partition function (A000041).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 4, 2, 3, 2, 4, 4, 4, 3, 1, 4, 4, 4, 3, 3, 4, 4, 5, 4, 5, 4, 3, 3, 5, 2, 2, 8, 6, 6, 2, 4, 5, 6, 3, 7, 6, 4, 6, 5, 6, 4, 3, 3, 4, 2, 4, 5, 7, 5, 6, 4, 7, 7, 5, 2, 5, 6, 2, 6, 5, 4, 7, 7, 5, 6, 5, 3, 6, 2, 6, 4, 9, 8, 2, 5, 7, 6, 4, 2, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 27 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 2, 3, 4, 5, 30, 109. Also, for each n > 2 there is a positive integer k <= n+3 such that p(n) - k is prime.
(ii) For the strict partition function q(.) given by A000009, we have |{0 < k <= n: q(n) + k is prime}| > 0 for all n > 0 and |{0 < k <= n: q(n) - k is prime}| > 0 for all n > 4.

Examples

			a(5) = 1 since p(5) + 4 = 7 + 4 = 11 is prime.
a(30) = 1 since p(30) + 19 = 5604 + 19 = 5623 is prime.
a(109) = 1 since p(109) + 63 = 541946240 + 63 = 541946303 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_,k_]:=PrimeQ[PartitionsP[n]+k]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,n}]
    Table[a[n],{n,1,100}]

A309951 Irregular triangular array, read by rows: T(n,k) is the sum of the products of multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A000041(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11481
Offset: 0

Views

Author

Petros Hadjicostas, Aug 25 2019

Keywords

Comments

This array was inspired by R. H. Hardin's recurrences for the columns of array A212855. Rows k=1 to k=5 are due to him, while the remaining rows were computed by Alois P. Heinz.
Row n has length A000041(n) + 1, i.e., one more than the number of partitions of n.
Let R(m,n) := R(m,n,t=0) = A212855(m,n) for m,n >= 1, where R(m,n,t) = LHS of Eq. (6) of Abramson and Promislow (1978, p. 248).
Let P_n be the set of all lists a = (a_1, a_2,..., a_n) of integers a_i >= 0, i = 1,..., n such that 1*a_1 + 2*a_2 + ... + n*a_n = n; i.e., P_n is the set all integer partitions of n. (We use a different notation for partitions than the one in the name of T(n,k).) Then |P_n| = A000041(n) for n >= 0.
We have R(m,n) = A212855(m,n) = Sum_{a in P_n} (-1)^(n - Sum_{j=1..n} a_j) * (a_1 + a_2 + ... + a_n)!/(a_1! * a_2! * ... * a_n!) * (n! / ((1!)^a_1 * (2!)^a_2 * ... * (n!)^a_n))^m.
The recurrence of R. H. Hardin for column n of array A212855 is Sum_{s = 0..|P_n|} (-1)^s * T(n,s) * R(m-s,n) = 0 for n >= 1 and m >= |P_n| + 1.
The above recurrence is correct for all n >= 1, but it is not always a minimal one. For example, it seems to be the minimal one for n = 1,...,6, but not for n = 7 (see A212854). It seems to be minimal whenever every two different partitions of n give different multinomial coefficients.
For n = 7, the partitions (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (0, 2, 1, 0, 0, 0, 0) (i.e., 2 + 2 + 3) and (a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (3, 0, 0, 1, 0, 0, 0) (i.e., 1 + 1 + 1 + 4) give the same multinomial coefficient: 210 = 7!/(2!2!3!) = 7!/(1!1!1!4!). Hence, to find the minimal recurrence for n = 7, we count 210 only once in the set of multinomial coefficients: 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040. Then the absolute value of the coefficient of a(n-1) in the minimal recurrence is the sum of these multinomial coefficients (i.e., 11271); the absolute value of the coefficient of a(n-2) in the minimal recurrence is the sum of products of every two of them (i.e., 46169368), and so on.
Looking at the multinomial coefficients of the integer partitions of n = 8, 9, 10 on pp. 831-832 of Abramowitz and Stegun (1964), we see that, even in these cases, the above recurrence is not the minimal one. The number of distinct multinomial coefficients among the integer partitions of n is given by A070289.

Examples

			Triangle begins as follows:
  [n=0]: 1,   1;
  [n=1]: 1,   1;
  [n=2]: 1,   3,     2;
  [n=3]: 1,  10,    27,     18;
  [n=4]: 1,  47,   718,   4416,    10656,      6912;
  [n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
  ...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Since |P_3| = A000041(3) = 3, the recurrence of _R. H. Hardin_ for column n = 3 of array A212855 is T(3,0)*R(m,3) - T(3,1)*R(m-1,3) + T(3,2)*R(m-2,3) - T(3,3)*R(m-3,3) = 0; i.e., R(m,3) - 10*R(m-1,3) + 27*R(m-2,3) - 18*R(m-3,3) = 0 for m >= 4. We have the initial conditions R(m=1,3) = 1, R(m=2,3) = 19, and R(m=3,3) = 163. Thus, R(m,3) = 6^m - 2*3^m + 1 = A212850(m) for m >= 1. See the documentation of array A212855.
		

Crossrefs

Rightmost terms in rows give A309972.

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(x->
          binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]])
        end:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          expand(b(n-1, m)*(g(m$2)[n]*x+1)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
    seq(T(n), n=0..7);  # Alois P. Heinz, Aug 25 2019
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0 || i==1, {n!}, Join[Binomial[n, i]*#& /@ g[n - i, Min[n - i, i]], g[n, i - 1]]];
    b[n_, m_] := b[n, m] = If[n==0, 1, Expand[b[n-1, m]*(g[m, m][[n]]*x+1)]];
    T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
    T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 18 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..A000041(n)} (-1)^k * T(n,k) = 0.

A128628 An irregular triangular array read by rows, with shape sequence A000041(n) related to sequence A060850.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 6, 7, 8, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9
Offset: 1

Views

Author

Alford Arnold, Mar 27 2007, Aug 01 2007

Keywords

Comments

The next level gets created from each node by adding one or two more nodes. If a single node is added, its value is one more than the value of its parent. If two nodes are added, the first is equal in value to the parent and the value of the second is one more than the value of the parent.
Sequence A036043 counts the parts of numeric partitions and contains the same values on each row as the current sequence. When a node generates two branches the first branch can be mapped to cyclic partitions; all other branches map to matching partitions.
Appears to be the triangle in which the n-th row contains the number of parts of each partition of n, where the partitions are ordered as in A080577. - Jason Kimberley, May 12 2010

Examples

			The values at level three are 1, 2, and 3.
The 1 generates 1 and 2; the 2 generates 2 and 3; the 3 only generates 4.
The array begins
1
1 2
1 2 3
1 2 2 3 4
1 2 2 3 3 4 5
1 2 2 3 2 3 4 3 4 5 6
		

Crossrefs

Cf. A006128 (row sums), A036043.
Cf. A177740.
Cf. A308355 (limiting row sequence).

Programs

  • Mathematica
    Flatten[Table[Length /@ IntegerPartitions[n], {n, 9}]] (* T. D. Noe, Feb 27 2014 *)

A232504 Number of ways to write n = k + m (k, m > 0) with p(k) + q(m) prime, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 2, 2, 1, 1, 4, 1, 5, 4, 5, 4, 4, 3, 5, 5, 6, 2, 4, 8, 4, 3, 6, 5, 3, 5, 5, 8, 5, 6, 4, 7, 5, 5, 2, 6, 9, 8, 3, 10, 7, 9, 7, 4, 7, 8, 8, 5, 6, 8, 5, 4, 8, 5, 5, 7, 11, 7, 7, 9, 8, 7, 9, 11, 8, 10, 4, 7, 8, 7, 9, 13, 7, 8, 4, 6, 11, 8, 13, 3, 8, 10, 5, 7, 11, 11, 6, 9, 6, 5, 10, 6, 9, 5, 10, 11, 9, 8, 11, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 25 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.

Examples

			a(5) = 1 since 5 = 1 + 4 with p(1) + q(4) = 1 + 2 = 3 prime.
a(8) = 1 since 8 = 4 + 4 with p(4) + q(4) = 5 + 2 = 7 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[PartitionsP[k]+PartitionsQ[n-k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A046641 a(n) is the smallest positive integer m such that the number of partitions p(m) = A000041(m) is divisible by n.

Original entry on oeis.org

1, 2, 3, 11, 4, 9, 5, 11, 14, 9, 6, 21, 28, 10, 7, 15, 54, 21, 20, 58, 10, 8, 32, 21, 24, 28, 14, 11, 26, 9, 44, 66, 16, 94, 18, 21, 86, 47, 129, 66, 35, 10, 27, 15, 14, 75, 56, 70, 19, 74, 178, 62, 52, 340, 18, 11, 20, 26, 54, 124, 115, 101, 24, 66, 84, 21, 47, 94, 32, 19
Offset: 1

Views

Author

Keywords

Comments

The initial term could also be taken to be 0.
From the formula a(p(n)) = n, it follows that every positive integer appears in this sequence. - Franklin T. Adams-Watters, Feb 09 2016

Examples

			The first partition number divisible by 9 is p(14) = 135, so a(9) = 14.
		

Crossrefs

See A091690 for simple PARI code, A145523(n)=a(2^n), A145524(n)=a(10^n), A145771 for record values. [M. F. Hasler, Oct 18 2008]

Programs

  • Mathematica
    Table[SelectFirst[Range[10^3], Divisible[PartitionsP@ #, n] &], {n, 70}] (* Michael De Vlieger, Feb 10 2016, Version 10 *)
  • PARI
    a(n) = my(m = 1); while(numbpart(m) % n, m++); m; \\ Michel Marcus, Feb 10 2016

Formula

a(p(n)) = n. - Franklin T. Adams-Watters, Feb 09 2016

Extensions

Definition corrected by Max Alekseyev, Apr 25 2010

A058699 a(n) = p(p(n)), p = partition numbers A000041.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 56, 176, 1002, 5604, 53174, 526823, 10619863, 214481126, 9035836076, 476715857290, 51820051838712, 7479565078510584, 2645418340688763701, 1318520401612270233223, 1774758704783877366657989, 4025091510519029370421431033
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (combinat[numbpart]@@2)(n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 05 2017
  • Mathematica
    Table[Nest[PartitionsP, n, 2], {n, 0, 20}] (* Michael De Vlieger, Apr 25 2016 *)
  • PARI
    a(n) = numbpart(numbpart(n)); \\ Michel Marcus, Apr 25 2016

Formula

a(n) = A000041(A000041(n)). - Omar E. Pol, Apr 25 2016
Previous Showing 51-60 of 3902 results. Next