Original entry on oeis.org
0, 9, 1089, 110889, 11108889, 1111088889, 111110888889, 11111108888889, 1111111088888889, 111111110888888889, 11111111108888888889, 1111111111088888888889, 111111111110888888888889, 11111111111108888888888889, 1111111111111088888888888889, 111111111111110888888888888889
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
a(2) = 33^2 = 1089.
Contribution from _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ...................... 9 = 9 * 1;
n=2: ................... 1089 = 99 * 11;
n=3: ................. 110889 = 999 * 111;
n=4: ............... 11108889 = 9999 * 1111;
n=5: ............. 1111088889 = 99999 * 11111;
n=6: ........... 111110888889 = 999999 * 111111;
n=7: ......... 11111108888889 = 9999999 * 1111111;
n=8: ....... 1111111088888889 = 99999999 * 11111111;
n=9: ..... 111111110888888889 = 999999999 * 111111111. (End)
Cf.
A075411,
A075412,
A075413,
A075414,
A075415,
A075416,
A075417,
A002283,
A178630,
A178631,
A178632,
A178633,
A178634,
A178635.
-
LinearRecurrence[{11, -10}, {0, 3}, 20]^2 (* Vincenzo Librandi, Mar 20 2014 *)
Table[FromDigits[PadRight[{},n,9]]FromDigits[PadRight[{},n,1]],{n,0,15}] (* Harvey P. Dale, Feb 12 2023 *)
A034048
Numbers with multiplicative digital root value 0.
Original entry on oeis.org
0, 10, 20, 25, 30, 40, 45, 50, 52, 54, 55, 56, 58, 59, 60, 65, 69, 70, 78, 80, 85, 87, 90, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 125, 130, 140, 145, 150, 152, 154, 155, 156, 158, 159, 160, 165, 169, 170, 178, 180, 185, 187, 190, 195
Offset: 1
20 is in the sequence because 2 * 0 = 0.
25 is in the sequence because 2 * 5 = 10 and 1 * 0 = 0.
Cf.
A031347,
A034048,
A002275,
A034049,
A034050,
A034051,
A034052,
A034053,
A034054,
A034055,
A034056 (numbers having multiplicative digital roots 0-9).
-
mdr0Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==0; Select[Range[ 0,200],mdr0Q] (* Harvey P. Dale, Jul 21 2020 *)
-
is(n)=factorback(digits(n))==0 \\ Charles R Greathouse IV, Feb 13 2017
A023705
Numbers with no 0's in base-4 expansion.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 21, 22, 23, 25, 26, 27, 29, 30, 31, 37, 38, 39, 41, 42, 43, 45, 46, 47, 53, 54, 55, 57, 58, 59, 61, 62, 63, 85, 86, 87, 89, 90, 91, 93, 94, 95, 101, 102, 103, 105, 106, 107, 109, 110, 111, 117, 118, 119, 121, 122, 123
Offset: 1
-
#include
uint32_t a_next(uint32_t a_n) { return (a_n + 1) | ((a_n & (a_n + 0xaaaaaaab)) >> 1); } /* Falk Hüffner, Jan 22 2022 */
-
a023705 n = a023705_list !! (n-1)
a023705_list = iterate f 1 where
f x = 1 + if r < 3 then x else 4 * f x'
where (x', r) = divMod x 4
-- Reinhard Zumkeller, Mar 06 2015, Oct 19 2011
-
[n: n in [1..130] | not 0 in Intseq(n,4)]; // Vincenzo Librandi, Oct 04 2018
-
R:= [1,2,3]: A:= 1,2,3:
for i from 1 to 4 do
R:= map(t -> (4*t+1,4*t+2,4*t+3), R);
A:= A, op(R);
od:
A; # Robert Israel, Oct 04 2018
-
Select[ Range[ 120 ], (Count[ IntegerDigits[ #, 4 ], 0 ]==0)& ]
Select[Range[200],DigitCount[#,4,0]==0&] (* Harvey P. Dale, Dec 23 2015 *)
-
isok(n) = vecmin(digits(n, 4)); \\ Michel Marcus, Jul 04 2015
-
from sympy import integer_log
def A023705(n):
m = integer_log(k:=(n<<1)+1,3)[0]
return sum(1+(k-3**m)//(3**j<<1)%3<<(j<<1) for j in range(m)) # Chai Wah Wu, Jun 27 2025
A031973
a(n) = Sum_{k=0..n} n^k.
Original entry on oeis.org
1, 2, 7, 40, 341, 3906, 55987, 960800, 19173961, 435848050, 11111111111, 313842837672, 9726655034461, 328114698808274, 11966776581370171, 469172025408063616, 19676527011956855057, 878942778254232811938, 41660902667961039785743, 2088331858752553232964200
Offset: 0
a(3) = 3^0 + 3^1 + 3^2 + 3^3 = 40.
Cf.
A000042 (unary representations),
A000225 (2^n-1: binary repunits shown in decimal),
A003462 ((3^n-1)/2: ternary repunits shown in decimal),
A002275 ((10^n-1)/9: decimal repunits).
-
[&+[n^k: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= proc(n) local c, i; c:=1; for i to n do c:= c*n+1 od; c end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Join[{1},Table[Total[n^Range[0,n]],{n,20}]] (* Harvey P. Dale, Nov 13 2011 *)
-
a(n)=(n^(n+1)-1)/(n-1) \\ Charles R Greathouse IV, Mar 26 2014
-
[lucas_number1(n,n,n-1) for n in range(1, 19)] # Zerinvary Lajos, May 16 2009
A105992
Near-repunit primes.
Original entry on oeis.org
101, 113, 131, 151, 181, 191, 211, 311, 811, 911, 1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11161, 11171, 11311, 11411, 16111, 101111, 111119, 111121, 111191, 111211, 111611, 112111, 113111, 131111, 311111, 511111
Offset: 1
a(2)=113 is a term because 113 is a prime and all digits are 1 except one.
- C. Caldwell and H. Dubner, "The near repunit primes 1(n-k-1)01(1k)," J. Recreational Math., 27 (1995) 35-41.
- Heleen, J. P., "More near-repunit primes 1(n-k-1)D(1)1(k), D=2,3, ..., 9," J. Recreational Math., 29:3 (1998) 190-195.
-
lst = {}; Do[r = (10^n - 1)/9; Do[AppendTo[lst, DeleteCases[Select[FromDigits[Permutations[Append[IntegerDigits[r], d]]], PrimeQ], r]], {d, 0, 9}], {n, 2, 14}]; Sort[Flatten[lst]] (* Arkadiusz Wesolowski, Sep 20 2011 *)
A214676
A(n,k) is n represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 11, 1, 2, 111, 1, 2, 11, 1111, 1, 2, 3, 12, 11111, 1, 2, 3, 11, 21, 111111, 1, 2, 3, 4, 12, 22, 1111111, 1, 2, 3, 4, 11, 13, 111, 11111111, 1, 2, 3, 4, 5, 12, 21, 112, 111111111, 1, 2, 3, 4, 5, 11, 13, 22, 121, 1111111111
Offset: 1
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, 1, ...
: 11, 2, 2, 2, 2, 2, 2, 2, ...
: 111, 11, 3, 3, 3, 3, 3, 3, ...
: 1111, 12, 11, 4, 4, 4, 4, 4, ...
: 11111, 21, 12, 11, 5, 5, 5, 5, ...
: 111111, 22, 13, 12, 11, 6, 6, 6, ...
: 1111111, 111, 21, 13, 12, 11, 7, 7, ...
: 11111111, 112, 22, 14, 13, 12, 11, 8, ...
-
A:= proc(n, b) local d, l, m; m:= n; l:= NULL;
while m>0 do d:= irem(m, b, 'm');
if d=0 then d:=b; m:=m-1 fi;
l:= d, l
od; parse(cat(l))
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
A[n_, b_] := Module[{d, l, m}, m = n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l];
Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
A260851
a(n) in base n is the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).
Original entry on oeis.org
1, 13, 439, 27961, 3034961, 522134761, 131870760799, 45954960939217, 21107054541321649, 12345678910987654321, 8954302429379707945271, 7883984846509322664831433, 8281481197999449959084458465, 10228838696316240496325238416281, 14674825961700306151086890240104831
Offset: 1
a(1) = 1 is the "concatenation" of (1) which is the unary representation of 1, cf A000042.
a(2) = 13 = 1101[2] = concatenation of (1, 10, 1), where 10 is the base 2 representation of 2.
a(3) = 439 = 121021[3] = concatenation of (1, 2, 10, 2, 1), where 10 is the base 3 representation of 3.
a(10) = 12345678910987654321 is the concatenation of (1, 2, 3, ..., 9, 10, 9, 8, ..., 2, 1); it is also a prime.
-
[1] cat [((n^n-1)/(n-1) - n + 1)*(1 + n*(n^n-1)/(n-1)) - 1: n in [2..15]]; // Vincenzo Librandi, Aug 02 2015
-
f:=proc(b) local i;
add((i+1)*b^i, i=0..b-2) + b^b + add(i*b^(2*b-i),i=1..b-1); end;
[seq(f(b),b=1..25)]; # N. J. A. Sloane, Sep 26 2015
-
Join[{1}, Table[((n^n - 1)/(n - 1) - n + 1) (1 + n (n^n - 1)/(n - 1)) - 1, {n, 2, 30}]] (* Vincenzo Librandi, Aug 02 2015 *)
-
A260851(n)=(1+n*r=if(n>2,n^n\(n-1),n*2-1))*(r-n+1)-1
-
def A260851(n): return sum(i*(n**(2*n-i)+n**(i-1)) for i in range(1, n)) + n**n # Ya-Ping Lu, Dec 23 2021
A046413
Numbers k such that the repunit of length k (11...11, with k 1's) has exactly 2 prime factors.
Original entry on oeis.org
3, 4, 5, 7, 11, 17, 47, 59, 71, 139, 211, 251, 311, 347, 457, 461
Offset: 1
7 is a term because 1111111 = 239*4649.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
-
Select[Range[60],PrimeOmega[FromDigits[PadRight[{},#,1]]]==2&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Aug 26 2024 *)
A083956
a(n) = sum of all cyclic permutation of concatenation of first n numbers. In each case the digits of a number are kept together for n>9.
Original entry on oeis.org
1, 33, 666, 11110, 166665, 2333331, 31111108, 399999996, 4999999995, 509876543215, 52098641976336, 5331076296399558, 546238942849832881, 56038035699304276305, 5755318721445859729830, 591693488306202516193456
Offset: 1
a(1) = 1, a(2) = 12 + 21, a(3) = 123 + 231 + 312 = 666.
a(11) = 1234567891011 + 2345678910111 + ... + 1011123456789 + 1112345678910.
-
# count digits in positive integer digs := proc(inp::integer) local resul,shiftinp : resul := 1 : shiftinp := iquo(inp,10) : while shiftinp > 0 do resul := resul+1 : shiftinp := iquo(shiftinp,10) : od : RETURN(resul) : end: # provide number of concatenation up to lst, permuted by cycl newnum := proc(lst::integer,cycl::integer) local resul,i,insrt : resul := 0 : for i from 1 to lst do insrt := ((i+cycl-1) mod lst) +1 : resul := resul*10^digs(insrt)+insrt : od : RETURN(resul) ; end : n := 2 : while n < 13 do su := 0 : for cycl from 0 to n-1 do # print(n," add ",newnum(n,cycl)) ; su := su + newnum(n,cycl) : od : printf("%a,",su) : n := n+1 : od : # R. J. Mathar, Mar 13 2006
A083956 := n -> add( convert( cat( 'modp(j+i,n)+1' $ j=1..n ),decimal,10), i=1..n ); # M. F. Hasler, Nov 08 2006
A246057
a(n) = (5*10^n - 2)/3.
Original entry on oeis.org
1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0
Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Alf van der Poorten, Kurt Thomsen, and Mark Wiebe, A curious cubic identity and self-similar sums of squares, The Mathematical Intelligencer, Vol. 29(2), pp. 39-41, March 2007.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
-
[(5*10^n-2)/3: n in [0..20]];
-
Table[(5 10^n - 2)/3, {n, 0, 20}]
-
vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014
Comments