cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A251597 Numbers b such that b^65536 + 1 is prime.

Original entry on oeis.org

1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292
Offset: 1

Views

Author

Felix Fröhlich, Dec 05 2014

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k) + 1 for k=16.
First square member of sequence is 3934049284 = (A253854(1))^2. - Jeppe Stig Nielsen, Jun 29 2015

Crossrefs

Extensions

Corrected last term, and extended, by Jeppe Stig Nielsen, Jun 29 2015
New b-file, updated with data from Message 89145 at PrimeGrid forum uploaded and sequence data corrected, by Felix Fröhlich, Jan 03 2016
a(1) = 1 inserted and new b-file by Jeppe Stig Nielsen, Sep 10 2018

A243959 Numbers k such that k^524288 + 1 is prime.

Original entry on oeis.org

1, 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004, 8630170, 9332124, 10913140, 11937916
Offset: 1

Views

Author

Felix Fröhlich, Jun 16 2014

Keywords

Comments

Numbers k such that k^(2^j) + 1 is a generalized Fermat prime for j=19.
1880370 is a member, but its position is not yet known. - Jeppe Stig Nielsen, Jan 24 2018
PrimeGrid has now tested and double checked the necessary candidates to prove that 1880370 is a(6). - Jeppe Stig Nielsen, Feb 20 2018

Crossrefs

Programs

Extensions

a(6) from Jeppe Stig Nielsen, Feb 20 2018
a(7) from Jeppe Stig Nielsen, Apr 27 2018
a(1) = 1 inserted and a(8) added by Jeppe Stig Nielsen, Sep 10 2018
a(9)-a(12) from Jeppe Stig Nielsen, Sep 21 2019
a(13) from Jeppe Stig Nielsen, Dec 27 2019
a(14) from Ray Chandler, Mar 28 2022
a(15)-a(17) communicated by Jeppe Stig Nielsen, Apr 01 2024
a(18)-a(21) from Jeppe Stig Nielsen, Jan 11 2025

A253854 Numbers b such that b^131072 + 1 is prime.

Original entry on oeis.org

1, 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, 5326454, 5400728, 5471814
Offset: 1

Views

Author

Felix Fröhlich, Jan 17 2015

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=17.
The first member exceeding 10^((10^6-1)/2^17) is known to be 42654182. - Jeppe Stig Nielsen, Jan 30 2016

Crossrefs

Extensions

Missing term a(8) inserted by Jeppe Stig Nielsen, Jul 02 2015
a(13) from Felix Fröhlich, Nov 01 2015
a(14)-a(20) from Jeppe Stig Nielsen, Jan 30 2016
a(21)-a(31) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by Jeppe Stig Nielsen, Sep 10 2018

A321323 Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 919444, 1059094, 1951734, 1963736, 3843236
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 04 2018

Keywords

Crossrefs

Extensions

a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
a(6) from Jeppe Stig Nielsen, Jan 11 2025

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Maple
    A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014

A096169 Odd n such that (n^4+1)/2 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 21, 23, 29, 35, 39, 57, 61, 65, 71, 73, 81, 103, 105, 113, 115, 119, 129, 153, 165, 169, 171, 199, 203, 205, 251, 259, 267, 275, 309, 313, 317, 333, 337, 339, 353, 363, 403, 405, 415, 419, 431, 445, 449, 453, 455, 463, 471, 477, 479, 487
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=3 because (3^4+1)/2=82/2=41 is prime.
		

Crossrefs

Cf. A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096170 primes of the form (n^4+1)/2, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ n: n in [0..2500] | IsPrime((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
  • Mathematica
    Select[Range[1,501,2],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jun 04 2011 *)

A123599 Smallest generalized Fermat prime of the form a^(2^n) + 1, where base a>1 is an integer; or -1 if no such prime exists.

Original entry on oeis.org

3, 5, 17, 257, 65537, 185302018885184100000000000000000000000000000001
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

First 5 terms {3, 5, 17, 257, 65537} = A019434 are the Fermat primes of the form 2^(2^n) + 1. Note that for all currently known a(n) up to n = 17 last digit is 7 or 1 (except a(0) = 3 and a(1) = 5). Corresponding least bases a>1 such that a^(2^n) + 1 is prime are listed in A056993.
The last-digit behavior clearly continues since, for any a, we have that a^(2^2) will be either 0 or 1 modulo 5. So for n >= 2, a(n) is 1 or 2 modulo 5, and odd. - Jeppe Stig Nielsen, Nov 16 2020

Crossrefs

Programs

  • Mathematica
    Do[f=Min[Select[ Table[ i^(2^n) + 1, {i, 2, 500} ],PrimeQ]];Print[{n,f}],{n,0,9}]

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A070025 At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.

Examples

			For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
    Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024
Previous Showing 21-30 of 54 results. Next