cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 401 results. Next

A357238 Inverse Moebius transform of tribonacci numbers (A000073).

Original entry on oeis.org

0, 1, 1, 3, 4, 9, 13, 27, 45, 86, 149, 285, 504, 941, 1710, 3163, 5768, 10662, 19513, 35978, 66026, 121565, 223317, 411053, 755480, 1390042, 2555802, 4701713, 8646064, 15904390, 29249425, 53801243, 98950246, 182003370, 334745794, 615704412, 1132436852, 2082895617, 3831006934
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 39; CoefficientList[Series[Sum[x^(2 k)/(1 - x^k - x^(2 k) - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    f(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = sumdiv(n, d, f(d)); \\ Michel Marcus, Sep 20 2022

Formula

G.f.: Sum_{k>=1} x^(2*k) / (1 - x^k - x^(2*k) - x^(3*k)).
G.f.: Sum_{k>=1} A000073(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A000073(d).

A096233 Number of digits of the 10^n-th tribonacci number (A000073).

Original entry on oeis.org

2, 26, 264, 2646, 26464, 264649, 2646494, 26464944, 264649443, 2646494434, 26464944348, 264649443484, 2646494434842, 26464944348425, 264649443484250, 2646494434842508, 26464944348425087
Offset: 0

Views

Author

Michael Taktikos, Aug 09 2004

Keywords

Comments

a(n)/10^n tends towards log[10](rho) = .26464944348425087191..., where rho is the real root of x^3-x^2-x-1 = 0. - Vladeta Jovovic, Sep 01 2004

Crossrefs

Cf. A068070.

Programs

  • Mathematica
    rho=1/3*((19+3*Sqrt[33])^(1/3)+(19-3*Sqrt[33])^(1/3)+1); triboappr[n_]:=N[(rho-1)/(4rho-6)*rho^(n-3), 3000]; Table[MantissaExponent[triboappr[10^i]][[2]], {i, 1, 7}]

A106310 Primes p such that p^2 divides some T(k), yet p does not divide any T(j) for any jA000073).

Original entry on oeis.org

47, 617, 2693
Offset: 1

Views

Author

T. D. Noe, May 17 2005

Keywords

Comments

No other p < 10^6. For Fibonacci numbers, A000045, there are no known primes with this property.

Examples

			47 is here because the 29th tribonacci number, 15902591, is the first tribonacci number divisible by 47 and 47^2 also divides it. Similarly, 617^2 divides T(409) and 2693^2 divides T(10553).
		

Programs

  • Mathematica
    FibonacciZero[n_, kMax_, m_] := Module[{a, s, k}, a=Join[{1}, Table[0, {n-1}]]; a=Mod[a, m]; k=0; While[k++; s=Mod[Plus@@a, m]; a=RotateLeft[a]; a[[n]]=s; s>0&&k
    				

A115792 a(n) = ceiling(g(A000073(n))) with g(k) = (k-1)^2/(4k).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 11, 20, 37, 69, 126, 232, 426, 784, 1442, 2652, 4878, 8973, 16503, 30354, 55829, 102686, 188869, 347384, 638939, 1175193, 2161516, 3975648, 7312356, 13449520, 24737524, 45499400, 83686444, 153923369, 283109213, 520719026, 957751607
Offset: 2

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

Old name: A dihedral D1 elliptical transform on A000073.
A D1 elliptical invariant transform leaves the ratio unchanged.

Crossrefs

Programs

  • Mathematica
    g[x_] = (x - 1)^2/(-4*x) M = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}} w[0] = {0, 1, 1}; w[n_] := w[n] = M.w[n - 1] a0 = Table[ -Floor[g[w[n][[1]]]], {n, 1, 25}] b0 = Table[N[a0[[n + 1]]/a0[[n]]], {n, 2, 24}]

Formula

Conjectures from Chai Wah Wu, Dec 21 2023: (Start)
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-7) + 3*a(n-8) + 2*a(n-9) + a(n-10) for n > 11.
G.f.: x^4*(-x^2 - x - 1)/((x + 1)*(x^2 + 1)*(x^4 + 1)*(x^3 + x^2 + x - 1)). (End)
For n >= 5, a(n) = a(n-1) + a(n-2) + a(n-3) - A132151(n+2). - Peter Munn, Jul 17 2025

Extensions

Edited by Peter Munn, Jul 17 2025

A116573 A Binet type formula from a polynomial whose coefficient expansion gives a tribonacci used as its first derivative InverseZtransform: A000073.

Original entry on oeis.org

1, 0, 4, 17, 1, 82, 324, 49, 961, 5185, 2501, 5776, 57600, 54290, 15625, 497026, 801025, 1, 3437317, 9120400, 1256641, 18714277, 85766122, 38850289, 72999937
Offset: 0

Views

Author

Roger L. Bagula, Mar 19 2006

Keywords

Comments

A polynomial derived in Mathematica by Bob Hanlon that is different from that in A000073; the first derivative sequence is different as well. Bob Hanlon's code: Needs["DiscreteMath`RSolve`"]; eqns={a[n]==a[n-1]+a[n-2]+a[n-3], a[0]==0,a[1]==a[2]==1}; Clear[f0,f1,f2,f3]; f0[0]=0;f0[1]=f0[2]=1; f0[n_Integer?Positive]:= f0[n]=f0[n-1]+f0[n-2]+f0[n-3]; f1[n_Integer]=a[n]/. RSolve[eqns,a[n],n][[1]]// ToRadicals//Simplify; (*Note that f1[n] is not restricted to nonnegative values of n.*) (*RSolve can also provide the generating function*) gf[x_]=GeneratingFunction[ eqns,a[n],n,x][[1,1]] -(x/(x^3 + x^2 + x - 1)) f2[n_Integer?NonNegative]:= SeriesCoefficient[ Series[gf[x],{x,0,n}],n];

References

  • Private email from Bob Hanlon (hanlonr(AT)cox.net), Mar 18 2006

Crossrefs

Cf. A000073.

Programs

  • Mathematica
    g[x_] = -(x/(x^3 + x^2 + x - 1)); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; Table[Abs[Floor[N[w[n]]]]^2, {n, 1, 25}]

Formula

g[x_] = -(x/(x^3 + x^2 + x - 1)); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; a(n) =Abs[w[n]]^2

A116574 A Binet type formula from a polynomial whose coefficient expansion gives a tribonacci used as it first derivative InverseZtransform: A000073.

Original entry on oeis.org

0, 1, 10, 1, 49, 225, 36, 730, 4097, 2025, 4761, 48401, 46225, 13456, 432965, 703922, 1, 3066002, 8185321, 1134225, 16974401, 78145601, 35545444, 67043345, 632572802
Offset: 0

Views

Author

Roger L. Bagula, Mar 19 2006

Keywords

Comments

x^2/(1 - x - x^2 - x^3) is similar to the polynomial: -(x/(x^3 + x^2 + x - 1)) but not the same. As the last is machine derived, it is probably more correct than the one quoted presently in A000073.

Crossrefs

Cf. A000073.

Programs

  • Mathematica
    (*Source : A000073*) g[x_] = x^2/(1 - x - x^2 - x^3); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; Table[Abs[Floor[N[w[n]]]]^2, {n, 1, 25}]

Formula

(*Source : A000073*) g[x_] = x^2/(1 - x - x^2 - x^3); dg[x_] = D[g[x], {x, 1}]; w[n_] := InverseZTransform[dg[x], x, n] // ToRadicals; a(n) =Abs[w[n]]^2

A122991 Indices of primes in tribonacci sequence A000073, minus 2.

Original entry on oeis.org

2, 4, 5, 9, 85, 96, 213, 800, 4200, 18697, 96877
Offset: 1

Views

Author

Artur Jasinski, Oct 28 2006

Keywords

Comments

Also, indices of primes in A282718.

Crossrefs

Formula

A000073(a(n) + 2) = A092836(n).
a(n) = A303263(n) - 2 = A092835(n) - 1.

Extensions

Name corrected and a(10)-a(11) added by Andrew Howroyd, Oct 10 2024

A200543 Product of tribonacci numbers: a(n) = A000073(n+2)*A000213(n).

Original entry on oeis.org

1, 1, 2, 12, 35, 117, 408, 1364, 4617, 15645, 52882, 178920, 605331, 2047705, 6927424, 23435384, 79281057, 268206185, 907335090, 3069491988, 10384017875, 35128880685, 118840150776, 402033352684, 1360069088841, 4601080767717, 15565344749410, 52657184101648, 178137977818211, 602636462317425
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2011

Keywords

Comments

The g.f. of the tribonacci numbers are as follows: g.f. for A000073 is x^2/(1-x-x^2-x^3), and g.f. for A000213 is (1-x^2)/(1-x-x^2-x^3).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 35*x^4 + 117*x^5 + 408*x^6 +...
where A(x) = 1*1 + 1*1*x + 2*1*x^2 + 4*3*x^3 + 7*5*x^4 + 13*9*x^5 + 24*17*x^6 + 44*31*x^7 + 81*57*x^8 + 149*105*x^9 +...+ A000073(n+2)*A000213(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff((1-x-3*x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)+x*O(x^n)),n)}

Formula

G.f.: (1 - x - 3*x^2 - x^3) / ((1 - 3*x - x^2 - x^3)*(1 + x + x^2 - x^3)).

A240562 Integers whose squares are in A000073 (tribonacci numbers).

Original entry on oeis.org

0, 1, 2, 9, 56, 103
Offset: 1

Views

Author

J. Lowell, Apr 16 2014

Keywords

Comments

a(6) > 10^7. - Tom Edgar, Apr 26 2014
Is this sequence finite?
No more terms < 10^19300. I conjecture that the sequence is finite. - Manfred Scheucher, Aug 17 2015

Examples

			9^2 = 81 is in the tribonacci sequence, so 9 is a term.
		

Crossrefs

Cf. A000073 (tribonacci numbers), A128911 (the corresponding squares).

Programs

  • Mathematica
    Select[Sqrt[#]&/@LinearRecurrence[{1,1,1},{0,0,1},200],IntegerQ]// Union (* Harvey P. Dale, Aug 16 2021 *)
  • Sage
    def tribs():
        a,b,c = 0,0,1
        while True:
            yield a
            a,b,c = b,c,a+b+c
    for n in tribs():
        m = sqrt(n)
        if m.is_integer():
            print(m) # Manfred Scheucher, Aug 17 2015

Extensions

Zero prepended by Harvey P. Dale, Aug 16 2021

A338192 Sum of Fibonacci and tribonacci numbers: a(n) = A000073(n) + A000045(n).

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 15, 26, 45, 78, 136, 238, 418, 737, 1304, 2315, 4123, 7365, 13193, 23694, 42655, 76958, 139126, 251974, 457112, 830501, 1510930, 2752175, 5018581, 9160293, 16734631, 30595694, 55976389, 102474674, 187700488, 343973242, 630623826, 1156594669
Offset: 0

Views

Author

Gary Detlefs, Oct 15 2020

Keywords

Comments

In general, the sum of a second-order sequence with signature (a,b) and a third-order sequence with signature (x,y,z) will be a fifth-order sequence with signature (a+x,-x*a+b+y, -y*a+z-b*x,-a*z-b*y,-b*z). In this instance, a=b=x=y=z=1 resulting in a signature of (2,1,-1,-2,-1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -1, -2, -1}, {0, 1, 2, 3, 5}, 50] (* Amiram Eldar, Oct 15 2020 *)

Formula

a(n) = A000073(n) + A000045(n).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) for n > 4 with a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5.
G.f.: x*(1 - 2*x^2 - 2*x^3)/(1 - 2*x - x^2 + x^3 + 2*x^4 + x^5). - Stefano Spezia, Oct 15 2020
Previous Showing 61-70 of 401 results. Next