cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 71 results. Next

A033440 Number of edges in 8-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 35, 43, 52, 62, 73, 85, 98, 112, 126, 141, 157, 174, 192, 211, 231, 252, 273, 295, 318, 342, 367, 393, 420, 448, 476, 505, 535, 566, 598, 631, 665, 700, 735, 771, 808, 846, 885, 925
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1) (x^4 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,28,35},50] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(n) = round( (7/16)*n(n-2) ) +0 or -1 depending on n: if there is k such 8k+4<=n<=8k+6 then a(n) = floor( (7/16)*n*(n-2)) otherwise a(n) = round( (7/16)*n(n-2)). E.g. because 8*2+4<=21<=8*2+6 a(n) = floor((7/16)*21*19) = floor(174, 5625)=174. - Benoit Cloitre, Jan 17 2002
a(n) = Sum_{k=0..n} A168181(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)*(x^4+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(7*i/8). - Wesley Ivan Hurt, Sep 12 2017

A033442 Number of edges in 10-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 64, 75, 87, 100, 114, 129, 145, 162, 180, 198, 217, 237, 258, 280, 303, 327, 352, 378, 405, 432, 460, 489, 519, 550, 582, 615, 649, 684, 720, 756, 793, 831, 870, 910, 951, 993, 1036, 1080, 1125, 1170, 1216, 1263
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x^2 + x + 1) (x^6 + x^3 + 1)/((x - 1)^3 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)

Formula

a(n) = Sum_{k=0..n} A168184(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^2+x+1)*(x^6+x^3+1)/((x-1)^3*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(9*i/10). - Wesley Ivan Hurt, Sep 12 2017

Extensions

More terms from Vincenzo Librandi, Oct 20 2013

A033443 Number of edges in 11-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 65, 76, 88, 101, 115, 130, 146, 163, 181, 200, 220, 240, 261, 283, 306, 330, 355, 381, 408, 436, 465, 495, 525, 556, 588, 621, 655, 690, 726, 763, 801, 840, 880, 920, 961, 1003, 1046, 1090, 1135, 1181, 1228, 1276
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)

Formula

a(n) = Sum_{k=0..n} A145568(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)/((x-1)^3*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(10*i/11). - Wesley Ivan Hurt, Sep 12 2017

Extensions

More terms from Vincenzo Librandi, Oct 20 2013

A118013 Triangle read by rows: T(n,k) = floor(n^2/k), 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 9, 4, 3, 16, 8, 5, 4, 25, 12, 8, 6, 5, 36, 18, 12, 9, 7, 6, 49, 24, 16, 12, 9, 8, 7, 64, 32, 21, 16, 12, 10, 9, 8, 81, 40, 27, 20, 16, 13, 11, 10, 9, 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 121, 60, 40, 30, 24, 20, 17, 15, 13, 12, 11, 144, 72, 48, 36, 28, 24, 20, 18, 16, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2006

Keywords

Comments

T(n,1) = A000290(n); T(n,n) = n;
T(n,2) = A007590(n) for n>1;
T(n,3) = A000212(n) for n>2;
T(n,4) = A002620(n) for n>3;
T(n,5) = A118015(n) for n>4;
T(n,6) = A056827(n) for n>5;
central terms give A008574: T(2*k-1,k) = 4*(k-1)+0^(k-1);
row sums give A118014.

Examples

			Triangle begins:
1,
4, 2,
9, 4, 3,
16, 8, 5, 4,
		

Crossrefs

Cf. A010766.

Programs

  • Haskell
    a118013 n k = a118013_tabl !! (n-1) !! (k-1)
    a118013_row n = map (div (n^2)) [1..n]
    a118013_tabl = map a118013_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
  • PARI
    T(n,k)=n^2\k \\ Charles R Greathouse IV, Jan 15 2012
    

A212536 T(n,k)=Number of nondecreasing sequences of n 1..k integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 3, 1, 5, 4, 5, 3, 1, 6, 5, 7, 5, 4, 1, 7, 6, 8, 10, 8, 4, 1, 8, 7, 11, 12, 15, 8, 5, 1, 9, 8, 12, 17, 21, 15, 12, 5, 1, 10, 9, 14, 18, 30, 21, 24, 12, 6, 1, 11, 10, 16, 23, 33, 40, 33, 29, 16, 6, 1, 12, 11, 18, 26, 46, 44, 69, 40, 39, 16, 7, 1, 13, 12, 19, 30, 53, 64, 83, 91
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Table starts
.1.2..3..4..5...6...7...8...9..10..11...12...13...14...15...16...17...18...19
.1.2..3..4..5...6...7...8...9..10..11...12...13...14...15...16...17...18...19
.1.3..5..7..8..11..12..14..16..18..19...22...23...25...27...29...30...33...34
.1.3..5.10.12..17..18..23..26..30..31...40...41...43...47...52...53...59...60
.1.4..8.15.21..30..33..46..53..66..67...87...88...95..111..125..126..143..144
.1.4..8.15.21..40..44..64..76.103.104..148..149..165..197..229..230..271..272
.1.5.12.24.33..69..83.116.145.188.193..290..293..332..428..496..497..606..607
.1.5.12.29.40..91.106.161.202.266.272..474..478..561..747..874..876.1141.1142
.1.6.16.39.57.130.157.245.331.439.455..867..878.1034.1417.1646.1651.2236.2240
.1.6.16.45.70.166.200.334.451.644.665.1424.1440.1713.2384.2785.2793.3927.3932

Examples

			Some solutions for n=8 k=4
..1....1....2....1....1....1....1....2....1....1....1....1....2....2....1....1
..1....2....2....2....1....1....1....3....1....1....1....1....2....2....2....1
..2....3....3....2....1....1....1....3....1....2....1....2....2....4....2....2
..2....3....3....2....1....1....1....3....1....2....1....2....2....4....3....2
..2....3....3....2....1....2....2....3....1....2....1....2....4....4....4....3
..4....4....3....3....2....2....2....3....1....2....1....2....4....4....4....3
..4....4....4....3....2....4....2....3....2....2....2....2....4....4....4....3
..4....4....4....3....3....4....2....4....2....2....4....4....4....4....4....3
		

Crossrefs

Column 3 is A000212(floor((n+5)/2))
Row 3 is A106252

A087483 Row 0 of the order array of 3/2, i.e., row 0 of the transposable dispersion in A087465.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 17, 22, 28, 34, 41, 49, 57, 66, 76, 86, 97, 109, 121, 134, 148, 162, 177, 193, 209, 226, 244, 262, 281, 301, 321, 342, 364, 386, 409, 433, 457, 482, 508, 534, 561, 589, 617, 646, 676, 706, 737, 769, 801, 834, 868, 902, 937, 973, 1009, 1046, 1084
Offset: 0

Views

Author

Clark Kimberling, Sep 09 2003

Keywords

Comments

Also, column 0 of the transposable dispersion in A087468.

Crossrefs

Programs

Formula

a(n) = n + 1 - floor(n/3) + Sum_{i=1..n} floor(2i/3).
a(n) = 1 + floor((n+1)^2/3) = 1 + A000212(n+1).
a(n) = A192735(n+2) / (n+2). - Reinhard Zumkeller, Jul 08 2011
G.f.: -(x^4-x^3+x^2+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 31 2013

Extensions

Edited by Max Alekseyev, Dec 05 2013

A143974 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark those having x+y=1(mod 3); then R(m,n) is the number of marked unit squares in the rectangle [0,m]x[0,n].

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 3, 4, 4, 3, 2, 2, 4, 5, 5, 5, 4, 2, 2, 4, 6, 6, 6, 6, 4, 2, 3, 5, 7, 8, 8, 8, 7, 5, 3, 3, 6, 8, 9, 10, 10, 9, 8, 6, 3, 3, 6, 9, 10, 11, 12, 11, 10, 9, 6, 3, 4, 7, 10, 12, 13, 14, 14, 13, 12, 10, 7, 4, 4, 8, 11, 13, 15, 16, 16, 16, 15, 13, 11, 8, 4, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Examples

			Northwest corner:
0 0 1 1 1 2
0 1 2 2 3 4
1 2 3 4 5 6
1 2 4 5 6 8
1 3 5 6 8 10
R(3,4) counts these marked squares: (1,3), (2,2), (3,1), (3,4).
		

Crossrefs

Formula

R(m,n)=floor(mn/3).

A143977 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark squares having |x-y| == 0 (mod 3); then R(m,n) is the number of marked squares in the rectangle [0,m] X [0,n].

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 3, 4, 5, 6, 5, 4, 3, 3, 5, 6, 7, 7, 6, 5, 3, 3, 6, 7, 8, 9, 8, 7, 6, 3, 4, 6, 8, 10, 10, 10, 10, 8, 6, 4, 4, 7, 9, 11, 12, 12, 12, 11, 9, 7, 4, 4, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 4, 5, 8, 11, 14, 15, 16, 17, 16, 15, 14, 11, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Rows numbered 3,6,9,12,15,... are, except for initial terms, multiples of (1,2,3,4,5,6,7,...) = A000027.

Examples

			Northwest corner:
  1  1  1  2  2  2  3
  1  2  2  3  4  4  5
  1  2  3  4  5  6  7
  2  3  4  6  7  8 10
  2  4  5  7  9 10 12
		

Crossrefs

Rows and columns: A002264, A004523, A000027, A004772, A047212, et al.

Programs

  • Mathematica
    T[m_,n_]:=Ceiling[m n/3];Flatten[Table[T[m-n+1,n],{m,13},{n,m}]] (* Stefano Spezia, Oct 27 2022 *)

Formula

R(m,n) = ceiling(m*n/3). [Corrected by Stefano Spezia, Oct 27 2022]

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A152729 a(n) = (n-2)^4 - a(n-1) - a(n-2), with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144
Offset: 1

Views

Author

Keywords

Comments

a(n+2) - a(n-1) = n^4 - (n-1)^4 = A005917(n) for all n in Z. - Michael Somos, Sep 02 2018

Examples

			0 + 0 + 1 = 1^4; 0 + 1 + 15 = 2^4; 1 + 15 + 65 = 3^4; ...
G.f. = x^3 + 15*x^4 + 65*x^5 + 176*x^6 + 384*x^7 + 736*x^8 + 1281*x^9 + ... - _Michael Somos_, Sep 02 2018
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x+1)*(x^2+10*x+1)/((1-x)^5*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^4-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,4!}];lst
    LinearRecurrence[{4,-6,5,-5,6,-4,1}, {0,0,1,15,65,176,384}, 50] (* G. C. Greubel, Sep 01 2018 *)
    a[ n_] := With[ {m = Max[n, 2 - n]}, SeriesCoefficient[ x^3 (1 + x) (1 + 10 x + x^2) / ((1 - x)^5 (1 + x + x^2)), {x , 0, m}]]; (* Michael Somos, Sep 02 2018 *)
  • PARI
    concat([0,0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
    
  • PARI
    {a(n) = my(m = max(n, 2 - n)); polcoeff( x^3 * (1 + x) * (1 + 10*x + x^2) / ((1 - x)^5 * (1 + x + x^2)) + x * O(x^m), m)}; /* Michael Somos, Sep 02 2018 */
    

Formula

G.f.: -x^3*(x+1)*(x^2+10*x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Oct 28 2014
a(n) = a(2 - n) for all n in Z. - Michael Somos, Sep 02 2018

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021
Previous Showing 41-50 of 71 results. Next