cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 4813 results. Next

A278310 Numbers m such that T(m) + 3*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

3, 143, 4899, 166463, 5654883, 192099599, 6525731523, 221682772223, 7530688524099, 255821727047183, 8690408031080163, 295218051329678399, 10028723337177985443, 340681375412721826703, 11573138040695364122499, 393146012008229658338303, 13355391270239113019379843
Offset: 1

Views

Author

Bruno Berselli, Nov 17 2016

Keywords

Comments

Equivalently, both m+1 and 2*m+3 are squares for nonnegative m.
Corresponding triangular numbers T(m): 6, 10296, 12002550, 13855048416, 15988853699286, 18451128064030200, 21292585958400815526, ...
Square roots of T(m) + 3*T(m+1) are listed by A082405 (after 0).
Negative values of m for which T(m) + 3*T(m+1) is a square: -1, -2, -26, -842, -28562, -970226, -32959082, ...

Examples

			3 is in the sequence because T(3) + 3*T(4) = 6 + 3*10 = 6^2.
For n=5 is a(5) = 5654883, therefore floor(sqrt(5654883)) = 2377 = A182189(5) - 2 = 2379 - 2.
		

Crossrefs

Subsequence of A000466.
Cf. A278438: numbers m such that T(m) + 2*T(m+1) is a square.
Cf. A078522: numbers m such that 3*T(m) + T(m+1) is a square.
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), A076218 (k=3), this sequence (k=-5).

Programs

  • Magma
    Iv:=[3,143]; [n le 2 select Iv[n] else 34*Self(n-1)-Self(n-2)+40: n in [1..20]];
  • Maple
    P:=proc(q) local n; for n from 3 to q do if type(sqrt(2*n^2+5*n+3),integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 18 2016
  • Mathematica
    Table[((1 + Sqrt[2])^(4 n) + (1 - Sqrt[2])^(4 n))/8 - 5/4, {n, 1, 20}]
    RecurrenceTable[{a[1] == 3, a[2] == 143, a[n] == 34 a[n - 1] - a[n - 2] + 40}, a, {n, 1, 20}]
    LinearRecurrence[{35, -35, 1}, {3, 143, 4899}, 50] (* G. C. Greubel, Nov 20 2016 *)
  • PARI
    Vec(x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)) + O(x^50)) \\ G. C. Greubel, Nov 20 2016
    
  • Sage
    def A278310():
        a, b = 3, 143
        yield a
        while True:
            yield b
            a, b = b, 34*b - a + 40
    a = A278310(); print([next(a) for  in range(18)]) # _Peter Luschny, Nov 18 2016
    

Formula

O.g.f.: x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)).
E.g.f.: (exp((1-sqrt(2))^4*x) + exp((1+sqrt(2))^4*x) - 10*exp(x))/8 + 1.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
a(n) = 34*a(n-1) - a(n-2) + 40 for n>2.
a(n) = a(-n) = ((1 + sqrt(2))^(4*n) + (1 - sqrt(2))^(4*n))/8 - 5/4.
a(n) = 4*A001109(n)^2 - 1.
a(n) = -A029546(n) + 38*A029546(n-1) + 3*A029546(n-2) for n>1.
Lim_{n -> infinity} a(n)/a(n-1) = A156164.
Floor(sqrt(a(n))) = A182189(n) - 2.
a(n) - a(n-1) = 4*A046176(n) for n>1.

A285955 Numbers a(n) = T(b(n))*sqrt(T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = y solutions of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and K = (T(b(n)))^2= A285985(n).

Original entry on oeis.org

0, 6, 60, 1320, 12144, 262080, 2405970, 51894744, 476378760, 10274921850, 94320640056, 2034382775040, 18675010652760, 402797515372356, 3697557790357470, 79751873665825680, 732097767490332144, 15790468188346521390, 144951660405354891060, 3126432949419110989944
Offset: 0

Views

Author

Vladimir Pletser, Apr 29 2017

Keywords

Comments

Numbers a(n) which are the products of the triangular number T(b(n)) and the square root of this triangular number plus one, sqrt(T(b(n))+1), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
This sequence a(n) gives also the y solutions of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with x= T(b(n)) = A006454(n) and K = (T(b(n)))^2 = A285985(n), where T(b(n)) is the triangular number of b(n)= A006451(n).
Also: A000217(A006451(n)) * sqrt(A000217(A006451(n))+1).

Examples

			For n=2, b(n)=5, a(n)=60.
For n=5, b(n)=90, a(n)= 262080.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. This gives A000217(A006451(n)) * sqrt(A000217(A006451(n)) + 1) = 120 * sqrt(120 + 1) = 1320. - _David A. Corneth_, Apr 29 2017
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print (‘0,0’,’1,6’,’2,60’); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)* sqrt((b*(b+1)/2)+1); print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:

Formula

Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n))*sqrt(T(b(n))+1) (this sequence), one has :
a(n) = ([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)* sqrt(([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)+1).
Empirical g.f.: 6*x*(1 - x)*(1 + 11*x + 27*x^2 + 11*x^3 + x^4) / ((1 + 14*x - x^2)*(1 + 2*x - x^2)*(1 - 2*x - x^2)*(1 - 14*x - x^2)). - Colin Barker, Apr 30 2017

A309507 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1

Views

Author

Alois P. Heinz, Aug 05 2019

Keywords

Comments

Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(n+1) + k*(k+1) - m*(m+1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A053141. - Bradley Klee, Mar 01 2020; edited by N. J. A. Sloane, Mar 31 2020

Examples

			a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
		

Crossrefs

Cf. A000217, A001108, A046079 (the same for squares), A068194, A100821 (the same for primes for n>1), A309332.
See also A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in A333529.

Programs

  • Maple
    with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
  • Mathematica
    TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
          (TNn + TNn^2 - # + #^2)/(2 #)} & /@
        Complement[Divisors[TNn (TNn + 1)], {TNn}],
       And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
    Length[TriTriples[#]] & /@ Range[100]
    (* Bradley Klee, Mar 01 2020 *)

Formula

a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
a(n) = A092517(n) - A063440(n) - 1. - Ridouane Oudra, Dec 08 2023

A373330 a(n) is the difference between T = A000217(n^2) and the greatest square not exceeding T.

Original entry on oeis.org

0, 0, 1, 9, 15, 1, 41, 0, 55, 72, 9, 156, 36, 204, 262, 144, 135, 289, 209, 316, 111, 117, 406, 309, 527, 261, 342, 860, 804, 36, 954, 1200, 624, 605, 1257, 969, 1400, 741, 849, 1856, 1639, 0, 1721, 2076, 855, 701, 1770, 1101, 1719, 397, 426, 1980, 1416, 2449, 1142
Offset: 0

Views

Author

Hugo Pfoertner, Jun 02 2024

Keywords

Crossrefs

A373331 and A373332 are the coordinates of the observed lower envelope of this sequence.

Programs

  • Mathematica
    Array[PolygonalNumber[#^2] - Floor[Sqrt[(#^4 + #^2)/2]]^2 &, 55, 0] (* Michael De Vlieger, Jun 02 2024 *)
  • PARI
    a(n) = my(T=(n^4+n^2)/2); T-sqrtint(T)^2
    
  • Python
    from sympy import integer_nthroot
    def A373330(n): return (T:=(n**4 + n**2) // 2)-(integer_nthroot(T,2)[0])**2
    # Karl-Heinz Hofmann, Jul 01 2024

Formula

a(n) = A000217(n^2) - A373329(n)^2.
a(A002315(n)) = 0.

A025555 Least common multiple (or LCM) of first n positive triangular numbers (A000217).

Original entry on oeis.org

1, 3, 6, 30, 30, 210, 420, 1260, 1260, 13860, 13860, 180180, 180180, 180180, 360360, 6126120, 6126120, 116396280, 116396280, 116396280, 116396280, 2677114440, 2677114440, 13385572200, 13385572200, 40156716600, 40156716600
Offset: 1

Views

Author

Keywords

Examples

			a(5) = lcm{1, 3, 6, 10, 15} = 30.
		

Crossrefs

Programs

  • Haskell
    a025555 n = a025555_list !! (n-1)
    a025555_list = scanl1 lcm $ tail a000217_list
    -- Reinhard Zumkeller, Nov 22 2013
    
  • Maple
    HalfFarey := proc (n) local a,b,c,d,k,s; if n<2 then RETURN([1]) fi; a:=0; b:=1; c:=1; d:=n; s:=NULL; do k := iquo(n+b,d); a,b,c,d := c, d, k*c-a, k*d-b; if b < 2*a then break fi; s := s, a/b od; [s] end:
    A025555 := proc(n) local r; HalfFarey(n+1); subsop(nops(%) = NULL,%); mul(2*sin(Pi*r),r = %)^2 end: seq(round(evalf(A025555(i))),i=1..27); # Peter Luschny, Jun 09 2011
  • Mathematica
    nn=30;With[{trnos=Accumulate[Range[nn]]},Table[LCM@@Take[trnos,n], {n,nn}]] (* Harvey P. Dale, Oct 21 2011 *)
    f[x_] := x + 1; a[1] = f[1]; a[n_] := LCM[f[n], a[n - 1]]; Array[a, 30]/2 (* Robert G. Wilson v, Jan 04 2013 *)
  • PARI
    S=1;for(n=1,20,S=lcm(S,n*(n+1)/2);print1(S,",")) \\ Edward Jiang, Sep 08 2014

Formula

a(n) = A003418(n+1)/2. - Matthew Vandermast, Jun 04 2012

Extensions

Corrected by James Sellers
Definition rendered more precisely by Reinhard Zumkeller, Nov 22 2013

A075113 a(n) = A000217(n) - A048702(n).

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 4, 7, -7, -6, 0, 3, 13, 18, 28, 35, -35, -34, -24, -21, -5, 0, 14, 21, 43, 52, 70, 81, 105, 118, 140, 155, -155, -154, -136, -133, -105, -100, -78, -71, -35, -26, 0, 11, 47, 60, 90, 105, 151, 168, 202, 221, 265, 286, 324, 347, 399, 424, 466, 493, 545, 574, 620, 651, -651, -650, -616, -613, -561
Offset: 0

Views

Author

Antti Karttunen, Sep 02 2002

Keywords

Comments

The positions of the zeros seem to be given by A000975.

Crossrefs

Programs

  • Mathematica
    A048702 := Join[{0}, Reap[For[k = 1, k < 1500, k += 2, bb = IntegerDigits[k, 2]; If[bb == Reverse[bb], If[EvenQ[Length[bb]], Sow[k/3]]]]][[2, 1]]]; Table[n*(n + 1)/2 - A048702[[n + 1]], {n, 0, 50}] (* G. C. Greubel, Sep 26 2017 *)
  • PARI
    a01(n) = my(f); f = length(binary(n)) - 1; 2^(f+1)*n + sum(i=0, f, bittest(n, i) * 2^(f-i)); \\ A048701
    a(n) = n*(n+1)/2 - a01(n)/3; \\ A006095
    
  • Python
    def A075113(n: int) -> int:
        s = bin(n)[2:]
        return n * (n + 1) // 2 - int(s + s[::-1], 2) // 3
    print([A075113(n) for n in range(69)]) # Peter Luschny, Dec 14 2022

Formula

a(A000225(n)) = ((2^n)-1)*(2^(n-1)) - (2^(2n) - 1)/3 = A006095(n).

Extensions

Definition corrected by Georg Fischer, Dec 13 2022

A086737 a(n) = A000217(A000041(n)).

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 120, 253, 465, 903, 1596, 3003, 5151, 9180, 15576, 26796, 44253, 74305, 120295, 196878, 314028, 502503, 788140, 1241100, 1917861, 2968266, 4531555, 6913621, 10421895, 15705210, 23409903, 34857075, 51445296, 75774205, 110759286
Offset: 0

Views

Author

Jon Perry, Jul 29 2003

Keywords

Comments

a(n) is the number of partitions of 2n that are sum-symmetric. That is, a(n) is the number of partitions of 2n that can be divided into two subsequences (no central summand) that each total to n. Example: Of the 11 partitions of 6, there are 6 that are sum-symmetric (partition subsequences bracketed [] and listed in descending order for clarity:) [3][3], [3][2,1], [3][1,1,1], [2,1][2,1], [2,1][1,1,1], [1,1,1][1,1,1]. As this example suggests, a(n) = p(n)*(p(n)+1)/2. - Gregory L. Simay, Oct 26 2015

Crossrefs

Programs

  • Maple
    f:= proc(n) local p;
      p:= combinat:-numbpart(n);
      p*(p+1)/2
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 26 2015
  • Mathematica
    pp = Array[PartitionsP, 40, 0]; pp (pp + 1)/2 (* Jean-François Alcover, Mar 19 2019 *)
  • PARI
    a(n) = apply(x->x*(x+1)/2, numbpart(n)); \\ Michel Marcus, Oct 26 2015

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 25 2017

A092858 "Sum" of the sequences of primes and the triangular numbers (A000217).

Original entry on oeis.org

5, 6, 7, 10, 11, 13, 15, 17, 19, 21, 23, 28, 29, 31, 36, 37, 41, 43, 45, 47, 53, 55, 59, 61, 66, 67, 71, 73, 78, 79, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 120, 127, 131, 136, 137, 139, 149, 151, 153, 157, 163, 167, 171, 173, 179, 181, 190, 191, 193, 197, 199
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu)

Keywords

Comments

If two monotonic sequences are mapped into the real codomain of (0,1) as it is defined in A051006, then the fractional part of the sum of the two reals can be mapped back into a sequence as defined in A092855, yielding the "sum" of the two sequences.

Crossrefs

Programs

  • PARI
    {ssum(a,b)= /*Returns the "sum" monotonic sequences a and b */ return(mtinv(mt(a)+mt(b))) /* the functions mt(a) and mtinv(r) are defined in A051006 and A092855, respectively */ }

A092859 "Difference" of the sequences of triangular numbers (A000217) and the primes (cf. A092858).

Original entry on oeis.org

3, 4, 5, 7, 12, 13, 16, 18, 19, 22, 23, 30, 31, 38, 39, 40, 42, 43, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 60, 61, 68, 69, 70, 72, 73, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 102, 103, 106, 108, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu)

Keywords

Comments

Here the complement of the sequence of primes (1 and the composites) is "added" to the sequence of triangulars, according to the definition outlined in A092858.

Crossrefs

Programs

  • PARI
    {sdif(a,b)= /*Returns the "difference" of monotonic sequences a and b */ return(mtinv(mt(a)+mt(compl(b)))) /* the functions mt(a) and mtinv(r) are defined in A051006 and A092855, respectively */ } {compl(v)=/* Returns the complement of v monotonic positive sequence */ local(n,p=0,vv=[]);n=matsize(v)[2];for(i=1,n, for(j=p+1,v[i]-1,vv=concat (vv,j));p=v[i]);return(vv)}

A096032 Take pairs (a, b), sorted on a, such that T(a)+T(b)=concatenation of a and b, where T(k) is the k-th triangular number A000217(k). Sequence gives values of b.

Original entry on oeis.org

1, 415, 1545, 1726, 2196, 910, 3676, 3846, 910, 5226, 415, 6970, 7171, 8526, 9231, 9300, 9756, 9850, 9880, 44835, 9880, 9850, 9756, 9300, 9231, 52830, 8526, 7171, 6970, 5226, 3846, 3676, 2196, 1726, 1545, 84906, 89386, 99580, 99580, 89386, 84906
Offset: 1

Views

Author

Lekraj Beedassy, Jun 16 2004

Keywords

Comments

For values of a see A096031.
It is easier to generate the pairs sorted by b. A d-digit number b is a member iff 4*(10^(2*d)-10^d-b^2+b)+1 is a square. All such b occur twice, except for 1, which occurs once. There are no members with 2, 6, 7, or 8 digits. There are six distinct nine-digit members. - David Wasserman, May 15 2007

Examples

			1726 of the sequence forms a pair with 150 and we indeed have T(150)+T(1726)=11325+1490401=1501726.
		

References

  • J. S. Madachy, Madachy's Mathematical Recreations, pp. 166 Dover NY 1979.

Programs

  • Mathematica
    f[n_] := Block[{k = n + 1, t1 = n(n + 1)/2, td = IntegerDigits[n]}, While[k < 15*n && t1 + k(k + 1)/2 != FromDigits[ Join[ td, IntegerDigits[k]]], k++ ]; If[k != 15*n, k, 0]]; Do[ k = f[n]; If[k != 0, Print[n, " & ", k]], {n, 10^6}] (* Robert G. Wilson v, Jun 21 2004 *)

Extensions

Two more terms from Robert G. Wilson v, Jun 21 2004
Terms from a(19) onwards from David Wasserman, May 15 2007
Previous Showing 51-60 of 4813 results. Next