A274830
Numbers k such that 7*k+1 is a triangular number (A000217).
Original entry on oeis.org
0, 2, 5, 11, 17, 27, 36, 50, 62, 80, 95, 117, 135, 161, 182, 212, 236, 270, 297, 335, 365, 407, 440, 486, 522, 572, 611, 665, 707, 765, 810, 872, 920, 986, 1037, 1107, 1161, 1235, 1292, 1370, 1430, 1512, 1575, 1661, 1727, 1817, 1886, 1980, 2052, 2150, 2225
Offset: 1
-
Table[(14 (n - 1) n + (2 n - 1) (-1)^n + 1)/16, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
-
select(n->ispolygonal(7*n+1, 3), vector(3000, n, n-1))
-
concat(0, Vec(x^2*(2+3*x+2*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))
A276599
Values of n such that n^2 + 5 is a triangular number (A000217).
Original entry on oeis.org
1, 4, 10, 25, 59, 146, 344, 851, 2005, 4960, 11686, 28909, 68111, 168494, 396980, 982055, 2313769, 5723836, 13485634, 33360961, 78600035, 194441930, 458114576, 1133290619, 2670087421, 6605301784, 15562409950, 38498520085, 90704372279, 224385818726
Offset: 1
4 is in the sequence because 4^2 + 5 = 21, which is a triangular number.
-
I:=[1,4,10,25]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{0,6,0,-1},{1,4,10,25},30] (* Harvey P. Dale, Feb 13 2017 *)
-
Vec(x*(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
-
a(n)=([0,1;-1,6]^(n\2)*if(n%2,[1;10],[-1;4]))[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
def P(n): return lucas_number1(n, 2, -1)
[(1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A276601
Values of k such that k^2 + 9 is a triangular number (A000217).
Original entry on oeis.org
1, 6, 12, 37, 71, 216, 414, 1259, 2413, 7338, 14064, 42769, 81971, 249276, 477762, 1452887, 2784601, 8468046, 16229844, 49355389, 94594463, 287664288, 551336934, 1676630339, 3213427141, 9772117746, 18729225912, 56956076137, 109161928331, 331964339076
Offset: 1
6 is in the sequence because 6^2+9 = 45, which is a triangular number.
-
I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* G. C. Greubel, Sep 15 2021 *)
-
Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
-
def P(n): return lucas_number1(n, 2, -1)
[(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A276602
Values of k such that k^2 + 10 is a triangular number (A000217).
Original entry on oeis.org
0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
Offset: 1
9 is in the sequence because 9^2+10 = 91, which is a triangular number.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Soumeya M. Tebtoub, Hacène Belbachir and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
[n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
(9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
-
concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
-
[(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A341885
a(n) is the sum of A000217(p) over the prime factors p of n, counted with multiplicity.
Original entry on oeis.org
0, 3, 6, 6, 15, 9, 28, 9, 12, 18, 66, 12, 91, 31, 21, 12, 153, 15, 190, 21, 34, 69, 276, 15, 30, 94, 18, 34, 435, 24, 496, 15, 72, 156, 43, 18, 703, 193, 97, 24, 861, 37, 946, 72, 27, 279, 1128, 18, 56, 33, 159, 97, 1431, 21, 81, 37, 196, 438, 1770, 27, 1891, 499, 40, 18, 106, 75, 2278, 159, 282
Offset: 1
18 = 2*3*3 so a(18) = 2*3/2 + 3*4/2 + 3*4/2 = 15.
For other completely additive sequences with primes p mapped to a function of p, see
A001414.
-
f:= proc(n) local t; add(t[1]*(t[1]+1)/2*t[2], t = ifactors(n)[2]) end proc:
map(f, [$1..100]);
-
Prepend[Array[Total@ PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, 68, 2], 0] (* Michael De Vlieger, Feb 22 2021 *)
-
a(n) = my(f=factor(n), p); sum(k=1, #f~, p=f[k,1]; f[k,2]*p*(p+1)/2); \\ Michel Marcus, Aug 14 2022
-
from sympy import factorint
def A341885(n): return sum(k*m*(m+1)//2 for m,k in factorint(n).items()) # Chai Wah Wu, Feb 25 2021
A008345
a(n+1) = a(n)-b(n+1) if a(n) >= b(n+1) else a(n)+b(n+1), where {b(n)} are the triangular numbers A000217.
Original entry on oeis.org
0, 1, 4, 10, 0, 15, 36, 8, 44, 89, 34, 100, 22, 113, 8, 128, 264, 111, 282, 92, 302, 71, 324, 48, 348, 23, 374, 752, 346, 781, 316, 812, 284, 845, 250, 880, 214, 917, 176, 956, 136, 997, 94, 1040, 50, 1085, 4, 1132, 2308, 1083, 2358, 1032, 2410, 979, 2464, 924
Offset: 0
-
A008345 := proc(n) option remember; if n = 1 then n-1 elif A008345(n-1) >= n*(n+1)/2 then A008345(n-1)-n*(n+1)/2 else A008345(n-1)+n*(n+1)/2; fi; end;
-
nxt[{n_,a_}]:=Module[{tr=((n+1)(n+2))/2},{n+1,If[a>=tr,a-tr,a+tr]}]; Transpose[NestList[nxt,{0,0},50]][[2]] (* Harvey P. Dale, Jun 19 2013 *)
A051543
Quotients of consecutive values of lcm of first n triangular numbers (A000217).
Original entry on oeis.org
3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1
Offset: 1
a(5) = A025555(6)/A025555(5) = 210/30 = 7
A058395
Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
Original entry on oeis.org
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
The array T(n, k) starts:
[0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ...
[1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...
[2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...
[3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
[4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
[5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ...
[6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ...
[7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ...
[8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
The triangle
A055252 also appears in half of the array.
-
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
A085741
a(n) = T(n)^n, where T() are the triangular numbers (A000217).
Original entry on oeis.org
1, 1, 9, 216, 10000, 759375, 85766121, 13492928512, 2821109907456, 756680642578125, 253295162119140625, 103510234140112521216, 50714860157241037295616, 29345269354638035222576971
Offset: 0
a(3) = T(3)^3 = 6^3 = 216.
-
[((n*(n+1))/2)^n: n in [0..20]]; // Vincenzo Librandi, Sep 14 2011
-
a:=n->mul(sum(j, j=1..n),k=1..n): seq(a(n), n=0..13); # Zerinvary Lajos, Jun 02 2007
-
With[{rnn=Range[20]},Join[{1},First[#]^Last[#]&/@Thread[ {Accumulate[ rnn], rnn}]]] (* Harvey P. Dale, Dec 08 2013 *)
-
a(n) = (n*(n+1)/2)^n; \\ Michel Marcus, Feb 19 2019
Original entry on oeis.org
0, 0, 28, 351, 2016, 7750, 23220, 58653, 130816, 265356, 499500, 885115, 1492128, 2412306, 3763396, 5693625, 8386560, 12066328, 17003196, 23519511, 31996000, 42878430, 56684628, 74011861, 95544576, 122062500, 154449100, 193700403, 240934176, 297399466, 364486500
Offset: 0
a(3) = T(3^3) - 3^3 = T(27) - 27 = 378 - 27 = 351.
-
[n^3*(n^3-1)/2: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
-
Table[(n^6-n^3)/2,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2011 *)
(#(#-1))/2&/@(Range[0,30]^3) (* Harvey P. Dale, Dec 26 2021 *)
-
t(n)=n*(n+1)/2; for(n=0,30,print1(t(n^3)-n^3","))
Comments