cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 4813 results. Next

A274830 Numbers k such that 7*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 5, 11, 17, 27, 36, 50, 62, 80, 95, 117, 135, 161, 182, 212, 236, 270, 297, 335, 365, 407, 440, 486, 522, 572, 611, 665, 707, 765, 810, 872, 920, 986, 1037, 1107, 1161, 1235, 1292, 1370, 1430, 1512, 1575, 1661, 1727, 1817, 1886, 1980, 2052, 2150, 2225
Offset: 1

Views

Author

Colin Barker, Jul 08 2016

Keywords

Comments

From Peter Bala, Nov 21 2024: (Start)
Numbers of the form n*(7*n + 3)/2 for n in Z. Cf. A057570.
The sequence terms occur as the exponents in the expansion of Product_{n >= 1} (1 - x^(7*n)) * (1 + x^(7*n-2)) * (1 + x^(7*n-5)) = 1 + x^2 + x^5 + x^11 + x^17 + x^27 + x^36 + .... Cf. A363800. (End)

Crossrefs

Cf. similar sequences where k*n+1 is a triangular number: A000096 (k=1), A074377 (k=2), A045943 (k=3), A274681 (k=4), A085787 (k=5), A274757 (k=6).

Programs

  • Mathematica
    Table[(14 (n - 1) n + (2 n - 1) (-1)^n + 1)/16, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
  • PARI
    select(n->ispolygonal(7*n+1, 3), vector(3000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(2+3*x+2*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))

Formula

G.f.: x^2*(2 + 3*x + 2*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = (14*(n - 1)*n + (2*n - 1)*(-1)^n + 1)/16. Therefore:
a(n) = n*(7*n - 6)/8 for n even,
a(n) = (n - 1)*(7*n - 1)/8 for n odd.
E.g.f.: (x*(7*x -1)*cosh(x) + (7*x^2 + x + 1)*sinh(x))/8. - Stefano Spezia, Nov 26 2024

Extensions

Edited by Bruno Berselli, Jul 08 2016

A276599 Values of n such that n^2 + 5 is a triangular number (A000217).

Original entry on oeis.org

1, 4, 10, 25, 59, 146, 344, 851, 2005, 4960, 11686, 28909, 68111, 168494, 396980, 982055, 2313769, 5723836, 13485634, 33360961, 78600035, 194441930, 458114576, 1133290619, 2670087421, 6605301784, 15562409950, 38498520085, 90704372279, 224385818726
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			4 is in the sequence because 4^2 + 5 = 21, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,4,10,25]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1},{1,4,10,25},30] (* Harvey P. Dale, Feb 13 2017 *)
  • PARI
    Vec(x*(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • PARI
    a(n)=([0,1;-1,6]^(n\2)*if(n%2,[1;10],[-1;4]))[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+3*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276601 Values of k such that k^2 + 9 is a triangular number (A000217).

Original entry on oeis.org

1, 6, 12, 37, 71, 216, 414, 1259, 2413, 7338, 14064, 42769, 81971, 249276, 477762, 1452887, 2784601, 8468046, 16229844, 49355389, 94594463, 287664288, 551336934, 1676630339, 3213427141, 9772117746, 18729225912, 56956076137, 109161928331, 331964339076
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			6 is in the sequence because 6^2+9 = 45, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276602 Values of k such that k^2 + 10 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			9 is in the sequence because 9^2+10 = 91, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276601 (k=9), where k is the value added to n^2.

Programs

  • Magma
    [n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    (9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
    
  • Sage
    [(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = (9/(4*sqrt(2))*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n) ).
a(n) = 9*A001109(n-1).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 9*x^2 / (1-6*x+x^2).
a(n) = (9/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A341885 a(n) is the sum of A000217(p) over the prime factors p of n, counted with multiplicity.

Original entry on oeis.org

0, 3, 6, 6, 15, 9, 28, 9, 12, 18, 66, 12, 91, 31, 21, 12, 153, 15, 190, 21, 34, 69, 276, 15, 30, 94, 18, 34, 435, 24, 496, 15, 72, 156, 43, 18, 703, 193, 97, 24, 861, 37, 946, 72, 27, 279, 1128, 18, 56, 33, 159, 97, 1431, 21, 81, 37, 196, 438, 1770, 27, 1891, 499, 40, 18, 106, 75, 2278, 159, 282
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 22 2021

Keywords

Comments

By definition, this sequence is completely additive. - Peter Munn, Aug 14 2022

Examples

			18 = 2*3*3 so a(18) = 2*3/2 + 3*4/2 + 3*4/2 = 15.
		

Crossrefs

For other completely additive sequences with primes p mapped to a function of p, see A001414.

Programs

  • Maple
    f:= proc(n) local t; add(t[1]*(t[1]+1)/2*t[2], t = ifactors(n)[2]) end proc:
    map(f, [$1..100]);
  • Mathematica
    Prepend[Array[Total@ PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, 68, 2], 0] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    a(n) = my(f=factor(n), p); sum(k=1, #f~, p=f[k,1]; f[k,2]*p*(p+1)/2); \\ Michel Marcus, Aug 14 2022
  • Python
    from sympy import factorint
    def A341885(n): return sum(k*m*(m+1)//2 for m,k in factorint(n).items()) # Chai Wah Wu, Feb 25 2021
    

A008345 a(n+1) = a(n)-b(n+1) if a(n) >= b(n+1) else a(n)+b(n+1), where {b(n)} are the triangular numbers A000217.

Original entry on oeis.org

0, 1, 4, 10, 0, 15, 36, 8, 44, 89, 34, 100, 22, 113, 8, 128, 264, 111, 282, 92, 302, 71, 324, 48, 348, 23, 374, 752, 346, 781, 316, 812, 284, 845, 250, 880, 214, 917, 176, 956, 136, 997, 94, 1040, 50, 1085, 4, 1132, 2308, 1083, 2358, 1032, 2410, 979, 2464, 924
Offset: 0

Views

Author

Keywords

Comments

a(0) and a(4) are both zero. Are there any other zero values? - N. J. A. Sloane, Sep 12 2019

Crossrefs

Programs

  • Maple
    A008345 := proc(n) option remember; if n = 1 then n-1 elif A008345(n-1) >= n*(n+1)/2 then A008345(n-1)-n*(n+1)/2 else A008345(n-1)+n*(n+1)/2; fi; end;
  • Mathematica
    nxt[{n_,a_}]:=Module[{tr=((n+1)(n+2))/2},{n+1,If[a>=tr,a-tr,a+tr]}]; Transpose[NestList[nxt,{0,0},50]][[2]] (* Harvey P. Dale, Jun 19 2013 *)

A051543 Quotients of consecutive values of lcm of first n triangular numbers (A000217).

Original entry on oeis.org

3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			a(5) = A025555(6)/A025555(5) = 210/30 = 7
		

Crossrefs

Cf. A025555.
Cf. A051542.

Programs

  • Haskell
    a051543 n = a051542_list !! (n-1)
    a051543_list = zipWith div (tail a025555_list) a025555_list
    -- Reinhard Zumkeller, Mar 12 2014

Formula

a(n) = A025555(n+1)/A025555(n)

Extensions

Corrected and extended by James Sellers

A058395 Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n, 0) = T(n, 3) with T(2n, 0) = T(n, m) for some other value of m would change the generating function to the coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^m. This would produce A058393, A058394, A057884 (and effectively A007318).

Examples

			The array T(n, k) starts:
[0] 1, 0,  3,   0,   6,   0,  10,    0,   15,    0, ...
[1] 1, 1,  3,   3,   6,   6,  10,   10,   15,   15, ...
[2] 1, 2,  4,   6,   9,  12,  16,   20,   25,   30, ...
[3] 1, 3,  6,  10,  15,  21,  28,   36,   45,   55, ...
[4] 1, 4,  9,  16,  25,  36,  49,   64,   81,  100, ...
[5] 1, 5, 13,  25,  41,  61,  85,  113,  145,  181, ...
[6] 1, 6, 18,  38,  66, 102, 146,  198,  258,  326, ...
[7] 1, 7, 24,  56, 104, 168, 248,  344,  456,  584, ...
[8] 1, 8, 31,  80, 160, 272, 416,  592,  800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
		

Crossrefs

Rows are A000217 with zeros, A008805, A002620, A000217, A000290, A001844, A005899.
Columns are A000012, A001477, A016028.
The triangle A055252 also appears in half of the array.

Programs

  • Maple
    gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
    seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
  • Mathematica
    T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
    T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
    Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)

Formula

T(n, k) = T(n-1, k-1) + T(n, k-1) with T(0, k) = 1, T(2*n, 0) = T(n, 3) and T(2*n + 1, 0) = 0. Coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^3.

A085741 a(n) = T(n)^n, where T() are the triangular numbers (A000217).

Original entry on oeis.org

1, 1, 9, 216, 10000, 759375, 85766121, 13492928512, 2821109907456, 756680642578125, 253295162119140625, 103510234140112521216, 50714860157241037295616, 29345269354638035222576971
Offset: 0

Views

Author

Jon Perry, Jul 21 2003

Keywords

Examples

			a(3) = T(3)^3 = 6^3 = 216.
		

Crossrefs

Cf. A000217.
Essentially the same as A061718.

Programs

  • Magma
    [((n*(n+1))/2)^n: n in [0..20]]; // Vincenzo Librandi, Sep 14 2011
  • Maple
    a:=n->mul(sum(j, j=1..n),k=1..n): seq(a(n), n=0..13); # Zerinvary Lajos, Jun 02 2007
  • Mathematica
    With[{rnn=Range[20]},Join[{1},First[#]^Last[#]&/@Thread[ {Accumulate[ rnn],  rnn}]]] (* Harvey P. Dale, Dec 08 2013 *)
  • PARI
    a(n) = (n*(n+1)/2)^n; \\ Michel Marcus, Feb 19 2019
    

Formula

a(n) = ((n*(n+1))/2)^n. - Vincenzo Librandi, Sep 14 2011

Extensions

More terms from Ray Chandler, Nov 09 2003

A085744 a(n) = A000217(n^3) - n^3.

Original entry on oeis.org

0, 0, 28, 351, 2016, 7750, 23220, 58653, 130816, 265356, 499500, 885115, 1492128, 2412306, 3763396, 5693625, 8386560, 12066328, 17003196, 23519511, 31996000, 42878430, 56684628, 74011861, 95544576, 122062500, 154449100, 193700403, 240934176, 297399466, 364486500
Offset: 0

Views

Author

Jon Perry, Jul 21 2003

Keywords

Examples

			a(3) = T(3^3) - 3^3 = T(27) - 27 = 378 - 27 = 351.
		

Crossrefs

Programs

Formula

a(n) = n^3*(n^3 - 1)/2. - Vincenzo Librandi, Sep 14 2011
From Chai Wah Wu, Aug 08 2022: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
G.f.: -x^2*(x^4 + 29*x^3 + 147*x^2 + 155*x + 28)/(x - 1)^7. (End)
a(n) = A071232(n) - A000578(n). - J.S. Seneschal, Jul 08 2025
Previous Showing 91-100 of 4813 results. Next