A212860
Number of 7 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 127, 275563, 4479288703, 347190069843751, 96426023622482278621, 78785944892341703819175577, 163925632052722656731213188429183, 777880066963402408939826643081996101263, 7717574897043522397037273525233635595811018377
Offset: 0
Some solutions for n=3:
0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 2 1
1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0
1 0 2 2 1 0 2 0 1 0 1 2 2 0 1 1 0 2 1 2 0
0 2 1 1 0 2 0 2 1 1 0 2 0 1 2 2 0 1 0 1 2
2 0 1 2 1 0 1 0 2 2 1 0 1 2 0 0 1 2 1 2 0
2 1 0 0 1 2 1 0 2 0 1 2 2 0 1 1 0 2 2 1 0
1 2 0 2 1 0 0 1 2 0 2 1 2 1 0 2 0 1 2 0 1
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859.
-
A212860 := proc(n) sum(z^k/k!^7, k = 0..infinity);
series(%^x, z=0, n+1): n!^7*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212860(n), n=1..10); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[7, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A055133
Matrix inverse of A008459 (squares of entries of Pascal's triangle).
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -19, 27, -9, 1, 211, -304, 108, -16, 1, -3651, 5275, -1900, 300, -25, 1, 90921, -131436, 47475, -7600, 675, -36, 1, -3081513, 4455129, -1610091, 258475, -23275, 1323, -49, 1, 136407699, -197216832, 71282064, -11449536, 1033900, -59584, 2352, -64, 1
Offset: 0
Table T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
-1, 1;
3, -4, 1;
-19, 27, -9, 1;
211, -304, 108, -16, 1;
-3651, 5275, -1900, 300, -25, 1;
90921, -131436, 47475, -7600, 675, -36, 1;
... [edited by _Petros Hadjicostas_, Aug 24 2019]
From _Peter Bala_, Jul 24 2013: (Start)
Function | Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x) | 1, 5.40649, 7.23983
R(10,x) | 1, 5.26894, 12.97405, 18.53109
R(15,x) | 1, 5.26894, 12.94909, 24.04769, 33.87883
R(20,x) | 1, 5.26894, 12.94909, 24.04216, 38.54959, 53.32419
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
E(alpha*x) | 1, 5.26894, 12.94909, 24.04216, 38.54835, 56.46772, ...
where alpha = -1.44579 64907 ... ( = -(A115365/2)^2).
Note: The n-th zero of E(alpha*x) may be calculated in Maple 17 using the instruction evalf( (BesselJZeros(0,n)/BesselJZeros(0,1))^2 ). (End)
- Alois P. Heinz, Rows n = 0..99, flattened
- J. Riordan, Inverse relations and combinatorial identities, Amer. Math. Monthly, 71 (1964), 485-498; see p. 493 with beta_{n,k} = |T(n,k)|.
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, 308(24) (2008), 6466-6500.
-
T:= proc(n) local M;
M:= Matrix(n+1, (i, j)-> binomial(i-1, j-1)^2)^(-1);
seq(M[n+1, i], i=1..n+1)
end:
seq(T(n), n=0..10); # Alois P. Heinz, Mar 14 2013
-
T[n_] := Module[{M}, M = Table[Binomial[i-1, j-1]^2, {i, 1, n+1}, {j, 1, n+1}] // Inverse; Table[M[[n+1, i]], {i, 1, n+1}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Nov 28 2015, after Alois P. Heinz *)
A238390
E.g.f.: x / BesselJ(1, 2*x) (even powers only).
Original entry on oeis.org
1, 1, 4, 35, 546, 13482, 485892, 24108513, 1576676530, 131451399794, 13609184032808, 1712978776719938, 257612765775847132, 45620136452519144700, 9396239458048330569840, 2227147531572856811691105, 601916577165056911293330930, 183994483721828524163677628370
Offset: 0
-
S:= series(x/BesselJ(1,2*x),x,102):
seq((2*j)!*coeff(S,x,2*j),j=0..50); # Robert Israel, Jan 31 2016
-
Table[(CoefficientList[Series[x/BesselJ[1, 2*x], {x, 0, 40}], x] * Range[0, 40]!)[[n]], {n, 1, 41, 2}]
A047796
a(n) = Sum_{k=0..n} Stirling1(n,k)^2.
Original entry on oeis.org
1, 1, 2, 14, 194, 4402, 147552, 6838764, 418389078, 32639603798, 3161107700156, 372023906062756, 52280302234036252, 8645773770675973804, 1661888635268695003484, 367390786215560629372920, 92552610850186107484661670, 26356304249588730696338349990
Offset: 0
-
List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)^2 )); # G. C. Greubel, Aug 07 2019
-
[(&+[StirlingFirst(n,k)^2: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 07 2019
-
seq(add(stirling1(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Table[Sum[StirlingS1[n,k]^2,{k,0,n}],{n,0,20}] (* Emanuele Munarini, Jul 04 2011 *)
-
makelist(sum(stirling1(n,k)^2,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
-
a(n) = sum(k=0, n, stirling(n, k, 1)^2); \\ Michel Marcus, Mar 26 2016
-
[sum(stirling_number1(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
A287314
Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 4, -9, 6, 0, -33, 82, -72, 24, 0, 456, -1225, 1250, -600, 120, 0, -9460, 27041, -30600, 17700, -5400, 720, 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040, 0, -10643745, 33391954, -43471624, 31149496, -13524000, 3622080, -564480, 40320
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, -1, 2
[3] 0, 4, -9, 6
[4] 0, -33, 82, -72, 24
[5] 0, 456, -1225, 1250, -600, 120
[6] 0, -9460, 27041, -30600, 17700, -5400, 720
[7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040
...
For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).
-
A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end:
for n from 0 to 8 do print(A287314_row(n)) od;
A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end:
for n from 0 to 7 do A287314_poly(n) od;
-
nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}];
f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[
Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* Geoffrey Critzer, Jan 22 2021 *)
A340986
Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 19, 92, 255, 544, 995, ...
0, 211, 1354, 4725, 12196, 26215, ...
0, 3651, 29252, 123903, 377904, 939155, ...
- R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.
-
T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 02 2021
-
nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid
A192722
T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
Original entry on oeis.org
1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
Offset: 1
The triangle begins
n/k|..1.....2.......3........4........5........6
================================================
.1.|..1
.2.|..1.....4
.3.|..1....18.....36
.4.|..1....68.....432......576
.5.|..1...250....3900....14400....14400
.6.|..1...922...32400...252000...648000...518400
...
T(4,2) = 68:
There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence
T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2
= 36 + 16 + 16 = 68.
Matrix identity: A192721 * Pascal's triangle = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....5.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
-
J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z):
G := 1/(1-x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 15)):
for n from 1 to 14 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2):
seq(T(n), n=1..14); # Alois P. Heinz, Sep 10 2019
-
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
A336271
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * binomial(2*k,k) * a(n-k).
Original entry on oeis.org
1, 2, 10, 92, 1354, 29252, 873964, 34555880, 1748176714, 110183215988, 8467704986260, 779536758060920, 84699429189141100, 10725613123706081720, 1565870044943751242440, 261092436660169105108592, 49312362996510562406915914, 10473104312824253527997052500
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
A336638
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^3.
Original entry on oeis.org
1, 3, 21, 255, 4725, 123903, 4368729, 199467243, 11455187445, 808475761695, 68805857523321, 6950458374996843, 822292004658568761, 112639503374757412875, 17688916392275574761805, 3157133540377493872350855, 635546443798928578953138165
Offset: 0
-
nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^3, {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
A336639
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^4.
Original entry on oeis.org
1, 4, 36, 544, 12196, 377904, 15438816, 803602944, 51908768676, 4074743122384, 382079412133936, 42184889139337344, 5417567866536188896, 800808722921088352384, 135006904500993157933056, 25751088570167886107910144, 5517695042810314282550432676
Offset: 0
-
nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^4, {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] HypergeometricPFQ[{1/2, -k, -k, -k}, {1, 1, 1/2 - k}, 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
Comments