cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 71 results. Next

A001631 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 4, 7, 14, 27, 52, 100, 193, 372, 717, 1382, 2664, 5135, 9898, 19079, 36776, 70888, 136641, 263384, 507689, 978602, 1886316, 3635991, 7008598, 13509507, 26040412, 50194508, 96753025, 186497452, 359485397, 692930382, 1335666256, 2574579487
Offset: 0

Views

Author

Keywords

Comments

The "standard" tetranacci numbers with initial terms (0,0,0,1) are listed in A000078.
Starting (1, 2, 4, ...) is the INVERT transform of the cyclic sequence (1, 1, 1, 0, (repeat) ...); equivalent to the statement that (1, 2, 4, ...) corresponding to n = (1, 2, 3, ...) represents the numbers of ordered compositions of n using terms in the set "not multiples of four". - Gary W. Adamson, May 13 2013
a(n+4) equals the number of n-length binary words avoiding runs of zeros of lengths 4i+3, (i=0,1,2,...). - Milan Janjic, Feb 26 2015
a(n) is the number of ways to tile a skew double-strip of n-2 cells using squares and all possible "dominos", as seen in the comments in A000078, but with the added provision that the first tile (in the lower left corner) must be a domino. For reference, here is the skew double-strip corresponding to n=14, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "domino" tiles:
_ _
| | | |
| | | | | |
|_|, |_|, |_____|. - Greg Dresden and Ruotong Li, Jun 05 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Absolute values of first differences of standard tetranacci numbers A000078.
Cf. A000288 (variant: starting with 1, 1, 1, 1).
Cf. A000336 (variant: sum replaced by product).

Programs

  • Magma
    I:=[0,0,1,0]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001631:=(-1+z)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[0,-1,2,-1]]). Matrix(4, (i,j)-> `if`(i=j-1 or j=1, 1, 0))^n)[1,1]: seq(a(n), n=0..35); # Alois P. Heinz, Aug 01 2008
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 0}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    CoefficientList[Series[((-1+x) x^2)/(-1+x+x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 08 2016, simplified by M. F. Hasler, Apr 20 2018
    
  • PARI
    x='x+O('x^30); concat([0,0], Vec(((x-1)*x^2)/(x^4+x^3+x^2+x-1))) \\ G. C. Greubel, Jan 09 2018
    

Formula

G.f.: ((x-1)*x^2)/(x^4+x^3+x^2+x-1). - Harvey P. Dale, Oct 21 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 31 2000
Edited by M. F. Hasler, Apr 20 2018

A060455 7th-order Fibonacci numbers with a(0)=...=a(6)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 13, 25, 49, 97, 193, 385, 769, 1531, 3049, 6073, 12097, 24097, 48001, 95617, 190465, 379399, 755749, 1505425, 2998753, 5973409, 11898817, 23702017, 47213569, 94047739, 187339729, 373174033, 743349313, 1480725217
Offset: 0

Views

Author

Frank Ellermann, Apr 08 2001

Keywords

Comments

a(n) = number of runs in polyphase sort using 8 tapes and n-6 phases.

Examples

			General formula for k-th order numbers: f(n,k) = f(n-1,k) + ... + f(n-1-k,k) for n > k, otherwise f(n,k) = 1.
		

References

  • N. Wirth, Algorithmen und Datenstrukturen, 1975 (table 2.15 chapter 2.3.4).

Crossrefs

For k=1..5 see A000045, A000213, A000288, A000322, A000383.
Cf. A253333, A253318: primes and indices of primes in this sequence.
Cf. A122189 Heptanacci numbers with a(0),...,a(6) = 0,0,0,0,0,0,1.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) )); // G. C. Greubel, Feb 03 2019
    
  • Maple
    A060455 := proc(n) option remember: if n >=0 and n<=6 then RETURN(1) fi: procname(n-1)+procname(n-2)+procname(n-3)+procname(n-4)+procname(n-5)+procname(n-6)+procname(n-7) end;
  • Mathematica
    LinearRecurrence[{1,1,1,1,1,1,1},{1,1,1,1,1,1,1},40] (* Harvey P. Dale, Mar 17 2012 *)
  • PARI
    Vec((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) +O(x^40)) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Sage
    ((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 03 2019

Formula

a(n) = a(n-1) + a(n-2) + ... + a(n-7) for n > 6, a(0)=a(1)=...=a(6)=1.
G.f.: (-1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7). - R. J. Mathar, Oct 11 2011

Extensions

More terms from James Sellers, Apr 11 2001

A166444 a(0) = 0, a(1) = 1 and for n > 1, a(n) = sum of all previous terms.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Robert G. Wilson v, Oct 13 2009

Keywords

Comments

Essentially a duplicate of A000079. - N. J. A. Sloane, Oct 15 2009
a(n) is the number of compositions of n into an odd number of parts.
Also 0 together with A011782. - Omar E. Pol, Oct 28 2013
Inverse INVERT transform of A001519. - R. J. Mathar, Dec 08 2022

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 16*x^6 + 32*x^7 + 64*x^8 + 128*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n le 1 select n else 2^(n-2): n in [0..40]]; // G. C. Greubel, Jul 27 2024
    
  • Maple
    a:= n-> `if`(n<2, n, 2^(n-2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 02 2021
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Plus @@ Array[a, n - 1]; Array[a, 35, 0]
  • SageMath
    [(2^n +2*int(n==1) -int(n==0))/4 for n in range(41)] # G. C. Greubel, Jul 27 2024

Formula

a(n) = A000079(n-1) for n > 0.
O.g.f.: x*(1 - x) / (1 - 2*x) = x / (1 - x / (1 - x)).
a(n) = (1-n) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (exp(2*x) + 2*x - 1)/4. - Stefano Spezia, Aug 07 2022

A001648 Tetranacci numbers A073817 without the leading term 4.

Original entry on oeis.org

1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503, 4900991135
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,7,15]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Maple
    A001648:=-(1+2*z+3*z**2+4*z**3)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Rest@ CoefficientList[ Series[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, 40}], x] (* Or *)
    a[0] = 4; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[n_] := 2*a[n - 1] - a[n - 5]; Array[a, 33] (* Robert G. Wilson v *)
    LinearRecurrence[{1, 1, 1, 1}, {1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • Maxima
    a(n):=n*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1),i,0,((n-k)/4))/k,k,ceiling(n/5),n); /* Vladimir Kruchinin, Jan 20 2012 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4).
a(n) = trace of M^n, where M = the 4 X 4 matrix [ 0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g., the trace (sum of diagonal terms) of M^12 = a(12) = 2631 = (108 + 316 + 717 + 1490). - Gary W. Adamson, Feb 22 2004
a(n) = n*Sum_{k=ceiling(n/5)..n} Sum_{i=0..(n-k)/4} (-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1)/k, n>0. - Vladimir Kruchinin, Jan 20 2012

A104621 Heptanacci-Lucas numbers.

Original entry on oeis.org

7, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903, 7775, 15487, 30847, 61447, 122401, 243819, 485679, 967455, 1927135, 3838783, 7646719, 15231991, 30341581, 60439343, 120393007, 239818559, 477709983, 951581183, 1895515647, 3775799303, 7521257025
Offset: 0

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

This 7th-order linear recurrence is a generalization of the Lucas sequence A000032. Mario Catalani would refer to this is a generalized heptanacci sequence, had he not stopped his series of sequences after A001644 "generalized tribonacci", A073817 "generalized tetranacci", A074048 "generalized pentanacci", A074584 "generalized hexanacci." T. D. Noe and I have noted that each of these has many more primes than the corresponding tribonacci A000073 (see A104576), tetranacci A000288 (see A104577), pentanacci, hexanacci and heptanacci (see A104414). For primes in Heptanacci-Lucas numbers, see A104622. For semiprimes in Heptanacci-Lucas numbers, see A104623.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (-7+6*x+ 5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7) )); // G. C. Greubel, Apr 22 2019
    
  • Maple
    A104621 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[7, 1, 3, 7, 15, 31, 63])
        else
            add(procname(n-i),i=1..7) ;
        end if;
    end proc: # R. J. Mathar, Mar 26 2015
  • Mathematica
    a[0]=7; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[5]=31; a[6]=63; a[n_]:= a[n]= a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]+a[n-7]; Table[a[n], {n,0,40}] (* Robert G. Wilson v, Mar 17 2005 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    my(x='x+O('x^40)); Vec((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7)) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6-x^7), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6 +x^7)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7); a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: (7 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6)/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
a(n) = 7*A066178(n) - 6*A066178(n-1) - 5*A066178(n-2) - ... - 2*A066178(n-5) - A066178(n-6) if n >= 6. (End)

A127193 A 9th-order Fibonacci sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8185, 16353, 32673, 65281, 130433, 260609, 520705, 1040385, 2078721, 4153345, 8298505, 16580657, 33128641, 66192001, 132253569, 264246529, 527972353, 1054904321
Offset: 1

Views

Author

Luis A Restrepo (luisiii(AT)mac.com), Jan 07 2007

Keywords

Comments

9-Bonacci constant = 1.99802947...

Crossrefs

Cf. Fibonacci numbers A000045, tribonacci numbers A000213, tetranacci numbers A000288, pentanacci numbers A000322, hexanacci numbers A000383, 7th-order Fibonacci numbers A060455, octanacci numbers, A123526.

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1},40] (* Ray Chandler, Aug 01 2015 *)
    With[{c=Table[1,{9}]},LinearRecurrence[c,c,40]] (* Harvey P. Dale, Apr 08 2016 *)
  • PARI
    x='x+O('x^50); Vec((x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9+7*x^10)/(1 -2*x+ x^10)) \\ G. C. Greubel, Jul 28 2017

Formula

For a(1)=...=a(9)=1, a(10)=9, a(n)= 2*a(n-1) - a(n-10). - Vincenzo Librandi, Dec 20 2010
G.f.: x*(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8+7*x^9)/(1-2*x+x^10). - G. C. Greubel, Jul 28 2017

A214827 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 5.

Original entry on oeis.org

1, 5, 5, 11, 21, 37, 69, 127, 233, 429, 789, 1451, 2669, 4909, 9029, 16607, 30545, 56181, 103333, 190059, 349573, 642965, 1182597, 2175135, 4000697, 7358429, 13534261, 24893387, 45786077, 84213725, 154893189, 284892991, 523999905
Offset: 0

Views

Author

Abel Amene, Jul 29 2012

Keywords

Comments

See comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,5,5];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+4*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,5,5},40] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+4*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 24 2019
    
  • Sage
    ((1+4*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (x^2-4*x-1)/(x^3+x^2+x-1).
a(n) = -A000073(n) + 4*A000073(n+1) + A000073(n+2). - R. J. Mathar, Jul 29 2012

A214831 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 9.

Original entry on oeis.org

1, 9, 9, 19, 37, 65, 121, 223, 409, 753, 1385, 2547, 4685, 8617, 15849, 29151, 53617, 98617, 181385, 333619, 613621, 1128625, 2075865, 3818111, 7022601, 12916577, 23757289, 43696467, 80370333, 147824089, 271890889, 500085311, 919800289, 1691776489
Offset: 0

Views

Author

Abel Amene, Aug 07 2012

Keywords

Comments

Part of a group of sequences defined by a(0), a(1)=a(2), a(n)=a(n-1)+a(n-2)+a(n-3) which is a subgroup of sequences with linear recurrences and constant coefficients listed in the index. See comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,9,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+8*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,9,9},40] (* Harvey P. Dale, Oct 11 2017 *)
  • PARI
    Vec((x^2-8*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jul 08 2014
    
  • SageMath
    ((1+8*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1+8*x-x^2)/(1-x-x^2-x^3).
a(n) = -A000073(n) + 8*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019

A249413 Primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(13) is too large to display here. It has 62 digits and is the 210th term in A000383.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]

A214828 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 6.

Original entry on oeis.org

1, 6, 6, 13, 25, 44, 82, 151, 277, 510, 938, 1725, 3173, 5836, 10734, 19743, 36313, 66790, 122846, 225949, 415585, 764380, 1405914, 2585879, 4756173, 8747966, 16090018, 29594157, 54432141, 100116316, 184142614, 338691071, 622950001
Offset: 0

Views

Author

Abel Amene, Jul 30 2012

Keywords

Comments

See comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,6,6];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,6,6},33] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 24 2019
    
  • Sage
    ((1+5*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1+5*x-x^2)/(1-x-x^2-x^3).
a(n) = -A000073(n) + 5*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019
Previous Showing 11-20 of 71 results. Next