cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A052722 Expansion of e.g.f. (1 - 2*x - sqrt(1-4*x))^2 * (1 - sqrt(1-4*x))/8.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 3600, 100800, 3024000, 99792000, 3632428800, 145297152000, 6351561216000, 301699157760000, 15487223431680000, 854894733428736000, 50516506975334400000, 3182539939446067200000, 212985365178313728000000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[((1-2x-Sqrt[1-4x])^2 (1-Sqrt[1-4x]))/8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 30 2021 *)
    Table[If[n<5, 0, 10*(n-2)!*Binomial[n-3,2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052722(n):
        if (n<5): return 0
        else: return 10*factorial(n-2)*binomial(n-3,2)*catalan_number(n-3)
    [A052722(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(0) = a(1) = a(2) = a(3) = a(4) = 0, a(5)=120, a(n+3) = (9+7*n)*a(n+2) + (14 - 19*n - 13*n^2)*a(n+1) - (20 + 22*n - 2*n^2 - 4*n^3)*a(n).
a(n) = n!*A000344(n-3). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 5!*x^5*hypergeometric2F0([5/2, 3], [], 4*x).
E.g.f.: (1/2)*(1 - 5*x + 5*x^2 - (1 - 3*x + x^2)*sqrt(1-4*x)). (End)

A115144 Fifth convolution of A115140.

Original entry on oeis.org

1, -5, 5, 0, 0, -1, -5, -20, -75, -275, -1001, -3640, -13260, -48450, -177650, -653752, -2414425, -8947575, -33266625, -124062000, -463991880, -1739969550, -6541168950, -24647883000, -93078189750, -352207870014, -1335293573130, -5071418015120, -19293438101000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-5*x+5*x^2 +(1-3*x+x^2)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
    
  • Mathematica
    CoefficientList[Series[(1-5*x+5*x^2 +(1-3*x+x^2)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-5*x+5*x^2 +(1-3*x+x^2)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    ((1-5*x+5*x^2 +(1-3*x+x^2)*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^5 = P(6, x) - x*P(5, x)*c(x) with the o.g.f. c(x) = (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(6, x)=1-4*x+3*x^2 and P(5, x)=1-3*x+x^2.
a(n) = -C5(n-5), n>=5, with C5(n) = A000344(n+2) (fifth convolution of Catalan numbers). a(0)=1, a(1)=-5, a(2)=5, a(3)=0=a(4). [1, -5, 5] is row n=5 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
D-finite with recurrence +n*(n-5)*a(n) -2*(n-3)*(2*n-7)*a(n-1)=0. - R. J. Mathar, Sep 23 2021
From Peter Bala, Mar 05 2023: (Start)
a(n) = binomial(2*n - 6, n) - binomial(2*n - 6, n + 1).
a(n) = = -5/(n - 5)*binomial(2*n - 6, n) for n != 5.
a(n) = -A000344(n-3) for n >= 5. (End)

A143955 Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).

Original entry on oeis.org

0, 0, 0, 1, 6, 26, 101, 376, 1377, 5017, 18277, 66727, 244377, 898129, 3312554, 12260129, 45526754, 169588754, 633580634, 2373550184, 8914719134, 33562602134, 126640791884, 478848661898, 1814142235028, 6885560250148
Offset: 0

Views

Author

Emeric Deutsch, Oct 14 2008

Keywords

Comments

The positive terms form the partial sums of A000344.

Examples

			a(4)=6 because the Dyck paths of semilength 4 with leftmost valley at a positive altitude are UUDUDDUD, UUDUDUDD, UUDUUDDD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1); these altitudes are 1, 1, 1, 1 and 2, respectively.
		

Crossrefs

Programs

  • Maple
    C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^3*C^5/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27);
  • Mathematica
    CoefficientList[Series[x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^5/(1 - x), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • Maxima
    a(n):=5*sum(binomial(2*k,k-2)/(k+3),k,2,n-1); /* Vladimir Kruchinin, Mar 15 2016 */
    
  • Python
    from functools import cache
    @cache
    def B(n, k):
        if n <= 0 or k <= 0: return 0
        if n == k: return 1
        return B(n - 1, k) + B(n, k - 1)
    def A143955(k):
        return B(k + 3, k - 2)
    print([A143955(n) for n in range(26)]) # Peter Luschny, May 15 2022

Formula

a(n) = Sum_{k>=0} k*A097607(n,k).
G.f.: z^3*C^5/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the generating function of the Catalan numbers (A000108).
Conjecture: (n+2)*a(n) -4*(2*n+1)*a(n-1) +2*(10*n-9)*a(n-2) +17*(2-n)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 5*Sum_{k=2..n-1}(binomial(2*k,k-2)/(k+3)). - Vladimir Kruchinin, Mar 15 2016

A026029 Number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 3. Also T(2n,n), where T is defined in A026022.

Original entry on oeis.org

1, 2, 6, 20, 69, 242, 858, 3068, 11050, 40052, 145996, 534888, 1968685, 7276050, 26993490, 100490220, 375287550, 1405622460, 5278838100, 19873977240, 74994427170, 283595947284, 1074568266756, 4079184055640, 15511924233204, 59083160374952, 225384613313944
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is A008619(n+1). - Paul Barry, May 11 2009

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x)*(-1 + Sqrt[1 - 4*x] + 2*x)^2 / (4*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 03 2019 *)

Formula

Expansion of (1+x^2*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
a(n) = Sum_{k=0..n} C(n, k)*Sum_{i=0..k} C(k, 2i)*A000108(i+1). - Paul Barry, Jul 18 2003
a(n) = Sum_{k=0..3} A039599(n,k) = A000108(n) + A000245(n) + A000344(n) + A000588(n) = A026012(n) + A000588(n). - Philippe Deléham, Nov 12 2008
a(n) = C(2n,n) - C(2n,n-4). - Paul Barry, May 11 2009
Conjecture: (n+4)*a(n) + 6*(-n-2)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 4^(n+2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(4, 2*x)). - Stefano Spezia, Jan 17 2024

A050155 Triangle T(n,k), k>=0 and n>=1, read by rows defined by: T(n,k) = (2k+3)*binomial(2n,n-k-1)/(n+k+2).

Original entry on oeis.org

1, 3, 1, 9, 5, 1, 28, 20, 7, 1, 90, 75, 35, 9, 1, 297, 275, 154, 54, 11, 1, 1001, 1001, 637, 273, 77, 13, 1, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1, 41990, 48450, 38760, 23256, 10659, 3705, 950, 170, 19, 1
Offset: 1

Views

Author

Keywords

Comments

T(n-2k-1,k) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 2k+2 (cf. Zoran Sunic reference) . - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=k+1 . - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+k+1, n-k-1). - Emeric Deutsch, May 30 2004
Riordan array (c(x)^3,xc(x)^2) where c(x) is the g.f. of A000108. Inverse array is A109954. - Paul Barry, Jul 06 2005

Examples

			    1;
    3,   1;
    9,   5,   1;
   28,  20,   7,  1;
   90,  75,  35,  9,  1;
  297, 275, 154, 54, 11, 1;
  ...
		

Crossrefs

Cf. A000108, A001791 (row sums), A050144.

Programs

  • Maple
    T:= (n, k)->  (2*k+3)*binomial(2*n, n-k-1)/(n+k+2):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Jan 19 2013
  • Mathematica
    T[n_, k_] :=  (2*k + 3)*Binomial[2*n, n - k - 1]/(n + k + 2);
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 21 2016 *)

Formula

Sum_{ k = 0, .., n-1} T(n, k) = binomial(2n, n-1) = A001791(n).
G.f. of column k: x^(k+1)*C^(2*k+3) where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Feb 03 2004
T(n, k) = A039599(n, k+1) = A009766(n+k+1, n-k-1) = A033184(n+k+2, 2k+3) . - Philippe Deléham, May 28 2005
Sum_{k>= 0} T(m, k)*T(n, k) = A000108(m+n) - A000108(m)*A000108(n). - Philippe Deléham, May 28 2005
T(n, k)=(2k+3)binomial(2n+2, n+k+2)/(n+k+3)=C(2n+2, n+k+2)-C(2n+2, n+k+3) [offset (0, 0)]. - Paul Barry, Jul 06 2005

Extensions

Edited by Philippe Deléham, May 22 2005

A071718 Expansion of (1+x^2*C)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 3, 10, 32, 104, 345, 1166, 4004, 13936, 49062, 174420, 625328, 2258416, 8209045, 30008790, 110255100, 406923360, 1507973610, 5608843020, 20931740640, 78354322800, 294127079610, 1106939020044, 4175827174152, 15787544777504
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n)=number of Dyck (n+3)-paths whose third from last upstep initiates a long ascent, n>=1. A long ascent is one consisting of 2 or more upsteps. For example, a(1)=3 counts UDuUUDDD, UDuUDUDD, UDuUDDUD (third from last upstep in small type). - David Callan, Dec 08 2004
For n>0 a(n)=number of Dyck (n+3)-paths whose 5th and 6th steps are DU. For example, a(1)=3 counts UDUUduDD, UUDUduDD, UUUDduDD. - David Scambler, Feb 14 2011
Let X_n be the set of all noncrossing set partitions of an n-element set which either do not contain {n-1,n} as a block, or which do not contain the block {n} whenever 1 and n-1 are in the same block. a(n) is the cardinality of X_{n+2}. For example, a(1)=3 counts 1|2|3, 13|2, 123. - Henri Mühle, Jan 10 2017

Programs

  • Mathematica
    {1, 3}~Join~Table[(5/(n + 3) + 9/(n - 1))*Binomial[2 n, n - 2], {n, 2, 24}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

For n>1, a(n) = 3*A000245(n) + A000344(n) = (5/(n+3) + 9/(n-1))*binomial(2n,n-2).
D-finite with recurrence (n+3)*a(n) + 2*(-2*n-3)*a(n-1) + 2*(-n+1)*a(n-2) + 4*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Aug 25 2013

A119245 Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 14, 20, 1, 42, 75, 9, 132, 275, 54, 1, 429, 1001, 273, 13, 1430, 3640, 1260, 104, 1, 4862, 13260, 5508, 663, 17, 16796, 48450, 23256, 3705, 170, 1, 58786, 177650, 95931, 19019, 1309, 21, 208012, 653752, 389367, 92092, 8602, 252, 1
Offset: 0

Views

Author

Paul D. Hanna, May 10 2006

Keywords

Comments

Closely related to triangle A118919.
Row n contains 1+floor(n/2) terms.
From Peter Bala, Mar 20 2009: (Start)
Combinatorial interpretations of T(n,k):
1) The number of standard tableaux of shape (n-2*k,n+2*k).
2) The entries in column k are (with an offset of 2*k) the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4*k. See [Sunik, Theorem 4]. (End)

Examples

			Triangle begins:
     1;
     1;
     2,     1;
     5,     5;
    14,    20,    1;
    42,    75,    9;
   132,   275,   54,   1;
   429,  1001,  273,  13;
  1430,  3640, 1260, 104,  1;
  4862, 13260, 5508, 663, 17; ...
		

Crossrefs

Cf. A119244 (eigenvector), A088218, A000108, A000344, A001392; A118919 (variant), A158483; A002057, A002894.

Programs

  • Mathematica
    f1 = (1-Sqrt[1-4*x])/(2*x);
    DeleteCases[CoefficientList[Normal@Series[f1/(1 - x^2*y*f1^4),{x,0,10},{y,0,5}],{x,y}],0,Infinity]//TableForm  (* Bradley Klee, Feb 26 2018 *)
    Table[(1+4*k)/(n+1+2*k)*Binomial[2*n,n+2*k],{n,0,10},{k,0,Floor[n/2]}]//TableForm (* Bradley Klee, Feb 26 2018 *)
  • PARI
    T(n,k)=(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)

Formula

G.f.: A(x,y) = f/(1-x^2*y*f^4), where f=(1-sqrt(1-4*x))/(2*x) is the Catalan g.f. (A000108).
Row sums equal A088218(n) = C(2*n-1,n).
T(n,0) = A000108(n) (the Catalan numbers).
T(n,1) = A000344(n).
T(n,2) = A001392(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A000346(n-2).
Eigenvector is defined by: A119244(n) = Sum_{k=0..[n\2]} T(n,k)*A119244(k).
...
T(n,k) = (4*k+1)/(n+2*k+1)*binomial(2*n,n+2*k). Compare with A158483. - Peter Bala, Mar 20 2009
T(n,k) = A039599(n, 2*k). - Johannes W. Meijer, Sep 04 2013
A002894(n) = Sum_{k=0..floor(n/2)} (binomial(2k,k)^2)*(4^(n-2*k))*T(n,k). - Bradley Klee, Feb 26 2018

A355173 The Fuss-Catalan triangle of order 1, read by rows. Related to binary trees.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 4, 9, 14, 0, 1, 5, 14, 28, 42, 0, 1, 6, 20, 48, 90, 132, 0, 1, 7, 27, 75, 165, 297, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 0, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796
Offset: 0

Views

Author

Peter Luschny, Jun 25 2022

Keywords

Comments

The Fuss-Catalan triangle of order m is a regular, (0, 0)-based table recursively defined as follows: Set row(0) = [1] and row(1) = [0, 1]. Now assume row(n-1) already constructed and duplicate the last element of row(n-1). Next apply the cumulative sum m times to this list to get row(n). Here m = 1. (See the Python program for a reference implementation.)
This definition also includes the classical Fuss-Catalan numbers, since T(n, n) = A000108(n), or row 2 in A355262. For m = 2 see A355172 and for m = 3 A355174. More generally, for n >= 1 all Fuss-Catalan sequences (A355262(n, k), k >= 0) are the main diagonals of the Fuss-Catalan triangles of order n - 1.

Examples

			Table T(n, k) begins:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1, 2]
  [3] [0, 1, 3,  5]
  [4] [0, 1, 4,  9,  14]
  [5] [0, 1, 5, 14,  28,  42]
  [6] [0, 1, 6, 20,  48,  90,  132]
  [7] [0, 1, 7, 27,  75, 165,  297, 429]
  [8] [0, 1, 8, 35, 110, 275,  572, 1001, 1430]
  [9] [0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862]
Seen as an array reading the diagonals starting from the main diagonal:
  [0] 1, 1, 2,  5,  14,   42,  132,   429,  1430,   4862,   16796, ...  A000108
  [1] 0, 1, 3,  9,  28,   90,  297,  1001,  3432,  11934,   41990, ...  A000245
  [2] 0, 1, 4, 14,  48,  165,  572,  2002,  7072,  25194,   90440, ...  A099376
  [3] 0, 1, 5, 20,  75,  275, 1001,  3640, 13260,  48450,  177650, ...  A115144
  [4] 0, 1, 6, 27, 110,  429, 1638,  6188, 23256,  87210,  326876, ...  A115145
  [5] 0, 1, 7, 35, 154,  637, 2548,  9996, 38760, 149226,  572033, ...  A000588
  [6] 0, 1, 8, 44, 208,  910, 3808, 15504, 62016, 245157,  961400, ...  A115147
  [7] 0, 1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, ...  A115148
		

Crossrefs

A000108 (main diagonal), A000245 (subdiagonal), A002057 (diagonal 2), A000344 (diagonal 3), A000027 (column 2), A000096 (column 3), A071724 (row sums), A000958 (alternating row sums), A262394 (main diagonal of array).
Variants: A009766 (main variant), A030237, A130020.
Cf. A123110 (triangle of order 0), A355172 (triangle of order 2), A355174 (triangle of order 3), A355262 (Fuss-Catalan array).

Programs

  • Python
    from functools import cache
    from itertools import accumulate
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [0, 1]
        row = Trow(n - 1) + [Trow(n - 1)[n - 1]]
        return list(accumulate(row))
    for n in range(11): print(Trow(n))

Formula

The general formula for the Fuss-Catalan triangles is, for m >= 0 and 0 <= k <= n:
FCT(n, k, m) = (m*(n - k) + m + 1)*(m*n + k - 1)!/((m*n + 1)!*(k - 1)!) for k > 0 and FCT(n, 0, m) = 0^n. The case considered here is T(n, k) = FCT(n, k, 1).
T(n, k) = (n - k + 2)*(n + k - 1)!/((n + 1)!*(k - 1)!) for k > 0; T(n, 0) = 0^n.
The g.f. of row n of the FC-triangle of order m is 0^n + (x - (m + 1)*x^2) / (1 - x)^(m*n + 2), thus:
T(n, k) = [x^k] (0^n + (x - 2*x^2)/(1 - x)^(n + 2)).

A360144 a(n) = Sum_{k=0..n} binomial(2*n+3*k,n-k).

Original entry on oeis.org

1, 3, 14, 69, 344, 1721, 8621, 43206, 216570, 1085574, 5441294, 27272044, 136679882, 684959516, 3432431414, 17199626276, 86182614207, 431824008713, 2163629549132, 10840520569183, 54313805146415, 272122594209738, 1363372115057995, 6830627007245263
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2023

Keywords

Crossrefs

Programs

  • Maple
    A360144 := proc(n)
        add(binomial(2*n+3*k,n-k),k=0..n) ;
    end proc:
    seq(A360144(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x*(2/(1+sqrt(1-4*x)))^5)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x * c(x)^5) ), where c(x) is the g.f. of A000108.
D-finite with recurrence +n*(697*n-7543)*a(n) +(697*n^2+23641*n-3800)*a(n-1) +2*(-32006*n^2+199879*n-255053)*a(n-2) +(283953*n^2-2288641*n+4072186)*a(n-3) +2*(-186566*n^2+1774989*n-4013515)*a(n-4) +(146221*n^2-1648033*n+4472550)*a(n-5) +(38223*n^2-307771*n+532906)*a(n-6) -10*(1511*n-6875)*(2*n-13)*a(n-7)=0. - R. J. Mathar, Mar 12 2023
a(n) = binomial(2*n, n)*hypergeom([1, (1+2*n)/3, 2*(1+n)/3, 1+2*n/3, -n], [(1+n)/4, (2+n)/4, (3+n)/4, 1+n/4], -3^3/4^4). - Stefano Spezia, Jun 17 2025

A050145 T(n,k)=M(2n,n-1,k-1), 0<=k<=n, n >= 0, array M as in A050144.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 5, 4, 5, 1, 14, 14, 20, 7, 1, 42, 48, 75, 35, 9, 1, 132, 165, 275, 154, 54, 11, 1, 429, 572, 1001, 637, 273, 77, 13, 1, 1430, 2002, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 7072, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

First 7 columns of T are A000108, A002057, A000344, A000588, A001392, A000589, A000590.

Examples

			Rows: {0}; {1,0}; {2,1,1}; ...
		
Previous Showing 21-30 of 34 results. Next