cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 324 results. Next

A036291 a(n) = n*5^n.

Original entry on oeis.org

0, 5, 50, 375, 2500, 15625, 93750, 546875, 3125000, 17578125, 97656250, 537109375, 2929687500, 15869140625, 85449218750, 457763671875, 2441406250000, 12969970703125, 68664550781250, 362396240234375, 1907348632812500, 10013580322265625, 52452087402343750
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n*5^n: n in [0..20]]; // Vincenzo Librandi, Sep 09 2014
  • Maple
    g:=1/(1-5*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..31); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    Table[n 5^n, {n, 0, 20}] (* Vincenzo Librandi, Sep 09 2014 *)

Formula

G.f.: 5*x/(1 - 5*x)^2. - Vincenzo Librandi, Sep 09 2014
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(5/4).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(6/5). (End)
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 5*x*exp(5*x).
a(n) = n*A000351(n) = 5*A053464(n).
a(n) = 10*a(n-1) - 25*a(n-2) for n > 1. (End)

A047851 a(n) = A047848(3,n).

Original entry on oeis.org

1, 2, 8, 44, 260, 1556, 9332, 55988, 335924, 2015540, 12093236, 72559412, 435356468, 2612138804, 15672832820, 94036996916, 564221981492, 3385331888948, 20311991333684, 121871948002100, 731231688012596, 4387390128075572, 26324340768453428, 157946044610720564, 947676267664323380
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is A000351(n-1) for n >= 1.

Crossrefs

Programs

  • Magma
    [(6^n + 4)/5: n in [0..40]]; // G. C. Greubel, Jan 11 2025
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=6*a[n-1]+1 od: seq(a[n]+1, n=0..20); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    (6^Range[0,40] +4)/5 (* G. C. Greubel, Jan 11 2025 *)
  • Python
    def A047851(n): return (pow(6,n) + 4)//5
    print([A047851(n) for n in range(41)]) # G. C. Greubel, Jan 11 2025

Formula

a(n) = (6^n + 4)/5. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 05 2009: (Start)
a(0) = 1, a(1) = 2, a(n) = 7*a(n-1) - 6*a(n-2) for n > 1.
G.f.: (1 - 5*x)/(1 - 7*x + 6*x^2). (End)
a(n) = 6*a(n-1) - 4 (with a(0)=1). - Vincenzo Librandi, Aug 06 2010
E.g.f.: exp(x)*(exp(5*x) + 4)/5. - Elmo R. Oliveira, Aug 29 2024

Extensions

a(21)-a(24) from Elmo R. Oliveira, Aug 29 2024

A135158 a(n) = 5^n - 3^n - 2^n.

Original entry on oeis.org

-1, 0, 12, 90, 528, 2850, 14832, 75810, 383808, 1932930, 9705552, 48648930, 243605088, 1219100610, 6098716272, 30503196450, 152544778368, 762810181890, 3814309582992, 19072323542370, 95363943807648, 476826695752770, 2384154405761712, 11920834803510690, 59604362329076928, 298022376554789250
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Comments

Essentially the same as A130072. - Zak Seidov, Oct 03 2011

Examples

			a(4) = 528 because 5^4 = 625, 3^4 = 81, 2^4 = 16 and 625 - 81 - 16 = 528.
		

Crossrefs

Programs

Formula

G.f.: ( 1+19*x^2-10*x ) / ( (3*x-1)*(2*x-1)*(5*x-1) ).
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Zak Seidov, Oct 03 2011
E.g.f.: exp(5*x) - exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A135159 a(n) = 5^n - 3^n + 2^n.

Original entry on oeis.org

1, 4, 20, 106, 560, 2914, 14960, 76066, 384320, 1933954, 9707600, 48653026, 243613280, 1219116994, 6098749040, 30503261986, 152544909440, 762810444034, 3814310107280, 19072324590946, 95363945904800, 476826699947074, 2384154414150320, 11920834820287906, 59604362362631360, 298022376621898114
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Comments

Constants are the prime numbers in decreasing order.

Examples

			a(4)=560 because 5^4=625, 3^4=81, 2^4=16 and 625-81+16=560.
		

Crossrefs

Programs

  • Magma
    [5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
  • Mathematica
    lst={};Do[p=5^n-3^n+2^n;AppendTo[lst, p], {n, 0, 7^2}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
    CoefficientList[Series[1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
    Table[5^n - 3^n + 2^n, {n,0,25}] (* or *) LinearRecurrence[{10, -31, 30}, {1, 4, 20}, 25] (* G. C. Greubel, Sep 30 2016 *)

Formula

a(n) = 5^n - 3^n + 2^n.
From Mohammad K. Azarian, Jan 16 2009: (Start)
G.f.: 1/(1-5*x) - 1/(1-3*x) + 1/(1-2*x).
E.g.f.: exp(5*x) - exp(3*x) + exp(2*x). (End)
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - G. C. Greubel, Sep 30 2016

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A135160 a(n) = 5^n + 3^n - 2^n.

Original entry on oeis.org

1, 6, 30, 144, 690, 3336, 16290, 80184, 396930, 1972296, 9823650, 49003224, 244667970, 1222289256, 6108282210, 30531894264, 152630871810, 763068462216, 3815084423970, 19074648065304, 95370917376450, 476847616459176, 2384217167880930, 11921023089868344, 59604927188149890, 298024071132008136
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Examples

			a(4)=690 because 5^4=625, 3^4=81, 2^4=16 and we can write 625 + 81 - 16 = 690.
		

Crossrefs

Programs

Formula

a(n) = 5^n + 3^n - 2^n.
From Mohammad K. Azarian, Jan 16 2009: (Start)
G.f.: 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).
E.g.f.: e^(5*x) + e^(3*x) - e^(2*x). (End)
a(0)=1, a(1)=6, a(2)=30, a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Harvey P. Dale, Mar 10 2013

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A145232 a(n) = Fibonacci(5^n).

Original entry on oeis.org

1, 5, 75025, 59425114757512643212875125, 18526362353047317310282957646406309593963452838196423660508102562977229905562196608078556292556795045922591488273554788881298750625
Offset: 0

Views

Author

Artur Jasinski, Oct 05 2008

Keywords

Crossrefs

Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), this sequence (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 25*a(n-1)^5 - 25*a(n-1)^3 + 5*a(n-1) end if; end:
    seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 6}]
    Table[Round[N[(2/Sqrt[5])*Cosh[5^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]
    Fibonacci[5^Range[0,4]] (* Harvey P. Dale, Nov 29 2018 *)

Formula

a(n) = (G^(5^n) - (1 - G)^(5^n))/sqrt(5) where G = (1 + sqrt(5))/2.
a(n) = (2/sqrt(5))*cosh((2*k+1)^n*arccosh(sqrt(5)/2)).
a(n) = (2/sqrt(5))*cosh(5^n*arccosh(sqrt(5)/2)).
a(n) = (5^n)*A128935(n). - R. J. Mathar, Nov 04 2010
a(n) = A000045(A000351(n)). - Michel Marcus, Nov 07 2013
a(n+1) = 25*a(n)^5 - 25*a(n)^3 + 5*a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
a(n) = 5^n * Product_{k=0..n-1} (5*a(k)^4 - 5*a(k)^2 + 1) (Frontczak, 2024). - Amiram Eldar, Feb 29 2024

A165826 Totally multiplicative sequence with a(p) = 5.

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 3125, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    5^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-5*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = A000351(A001222(n)) = 5^bigomega(n) = 5^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 5 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A175169 Numbers k that divide the sum of digits of 2^k.

Original entry on oeis.org

1, 2, 5, 70
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

No other terms <= 200000. - Harvey P. Dale, Dec 16 2010
No other terms <= 1320000. - Robert G. Wilson v, Dec 18 2010
There are almost certainly no further terms.

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

A175525 Numbers k that divide the sum of digits of 13^k.

Original entry on oeis.org

1, 2, 5, 140, 158, 428, 788, 887, 914, 1814, 1895, 1976, 2579, 2732, 3074, 3299, 3641, 4658, 4874, 5378, 5423, 5504, 6170, 6440, 6944, 8060, 8249, 8915, 9041, 9158, 9725, 9824, 10661, 11291, 13820, 15305, 17051, 17393, 18716, 19589, 20876, 21641, 23756, 24188, 25961, 28409, 30632, 31307, 32387, 33215, 34970, 35240, 36653, 36977, 41558, 43970, 44951, 47444, 51764, 52655, 53375, 53852, 54104, 56831, 57506, 59153, 66479, 68063, 73562, 78485, 79286, 87908, 92093, 102029, 106934, 114854, 116321, 134051, 139397, 184037, 192353, 256469, 281381, 301118, 469004
Offset: 1

Views

Author

T. D. Noe, Dec 03 2010

Keywords

Comments

Almost certainly there are no further terms.
Comments from Donovan Johnson on the computation of this sequence, Dec 05 2010 (Start):
The number of digits of 13^k is approximately 1.114*k, so I defined an array d() that is a little bigger than 1.114 times the maximum k value to be checked. The elements of d() each are the value of a single digit of the decimal expansion of 13^k with d(1) being the least significant digit.
It's easier to see how the program works if I start with k = 2.
For k = 1, d(2) would have been set to 1 and d(1) would have been set to 3.
k = 2:
x = 13*d(1) = 13*3 = 39
y = 39\10 = 3 (integer division)
x-y*10 = 39-30 = 9, d(1) is set to 9
x = 13*d(2)+y = 13*1+3 = 16, y is the carry from previous digit
y = 16\10 = 1
x-y*10 = 16-10 = 6, d(2) is set to 6
x = 13*d(3)+y = 13*0+1 = 1, y is the carry from previous digit
y = 1\10 = 0
x-y*10 = 1-0 = 1, d(3) is set to 1
These steps would of course be inside a loop and that loop would be inside a k loop. A pointer to the most significant digit increases usually by one and sometimes by two for each successive k value checked. The number of steps of the inner loop is the size of the pointer. A scan is done from the first element to the pointer element to get the digit sum.
(End)
No other terms < 3*10^6. - Donovan Johnson, Dec 07 2010

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Select[Range[1000], Mod[Total[IntegerDigits[13^#]], #] == 0 &]

Extensions

a(47)-a(79) from N. J. A. Sloane, Dec 04 2010
a(80)-a(85) from Donovan Johnson, Dec 05 2010

A223321 T(n,k)=Rolling icosahedron footprints: number of nXk 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

1, 5, 12, 25, 125, 144, 125, 1625, 3125, 1728, 625, 21125, 105625, 78125, 20736, 3125, 274625, 3570125, 6865625, 1953125, 248832, 15625, 3570125, 122039125, 603351125, 446265625, 48828125, 2985984, 78125, 46411625, 4176940625, 54279694625
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
........1...........5..............25................125....................625
.......12.........125............1625..............21125.................274625
......144........3125..........105625............3570125..............122039125
.....1728.......78125.........6865625..........603351125............54279694625
....20736.....1953125.......446265625.......101966340125.........24143758634125
...248832....48828125.....29007265625.....17232311481125......10739266230499625
..2985984..1220703125...1885472265625...2912260640310125....4776881955584279125
.35831808.30517578125.122555697265625.492172048212411125.2124782217358970404625

Examples

			Some solutions for n=3 k=4
..0..1..8..9....0..1..0..7....0..1..0..2....0..1..0..6....0..6..2..4
..0..2..8..2....0..5..0..5....0..6..0..2....0..6.10..5....0..1..2..4
..6..2..4..2....0..1..0..7....0..7..0..7....0..6.10..5....0..6.10..4
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Column 1 is A001021(n-1)
Column 2 is A013710(n-1)
Column 3 is 25*65^(n-1)
Column 4 is 125*169^(n-1)
Row 1 is A000351(n-1)

Formula

Empirical for column k:
k=1: a(n) = 12*a(n-1)
k=2: a(n) = 25*a(n-1)
k=3: a(n) = 65*a(n-1)
k=4: a(n) = 169*a(n-1)
k=5: a(n) = 479*a(n-1) -15210*a(n-2)
k=6: a(n) = 1366*a(n-1) -232713*a(n-2) +9253764*a(n-3)
k=7: [order 8]
Empirical for row n:
n=1: a(n) = 5*a(n-1)
n=2: a(n) = 13*a(n-1) for n>2
n=3: a(n) = 38*a(n-1) -129*a(n-2) for n>4
n=4: [order 7] for n>10
n=5: [order 32] for n>36
Previous Showing 81-90 of 324 results. Next