cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 324 results. Next

A230710 Values of x such that x^2 + y^2 = 5^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 3, 2, 7, 38, 44, 29, 336, 718, 237, 2642, 10296, 8839, 16124, 108691, 164833, 24478, 922077, 2521451, 1476984, 6699319, 34182196, 35553398, 32125393, 306268562, 597551756, 130656229, 2465133864, 8701963882, 6890111163, 15949374758, 98248054847, 135250416961
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230711.
For all non-coprime solutions (x,y) to the equation x^2 + y^2 = p^n, x and y are both divisible by the prime p.
Using de Moivre's Theorem (in essence), define (c,d)*(e,f) as (ce-df,cf+de). Then a(n) = min{|u(n)|, |v(n)|}, where (u(n),v(n)) = (2,1)^n = (2,1)*(2,1)^[n-1]. Proof: It can be readily seen that u^2(n) + v^2(n) = 5^n. To show that u(n) and v(n) are relatively prime, assume that x,y are relatively prime. Then (2,1)*(x,y) = (2x-y, x+2y). If a prime p were to divide both of 2x-y and x+2y, then p would divide 5y, so p=5. Now suppose x == 2 (mod 5) and y == 1 (mod 5). It can be seen that 2x-y == -2 (mod 5) and x+2y == -1 (mod 5). The reverse also holds. Because u(1)=2 and v(1)=1, the result follows inductively. - Richard Peterson, May 21 2021

Examples

			a(4)=7 because 7^2 + 24^2 = 625 = 5^4.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[5^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1,1]], {n, 33}] (* T. D. Noe, Nov 04 2013 *)

Extensions

Typo in data fixed by Colin Barker, Nov 02 2013

A308621 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c*5^(3d) with a,b,c,d nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 3, 5, 2, 4, 4, 3, 3, 5, 3, 3, 6, 4, 4, 5, 2, 6, 5, 4, 4, 5, 2, 4, 6, 3, 4, 8, 5, 3, 5, 4, 5, 8, 5, 5, 4, 3, 5, 7, 4, 5, 8, 4, 2, 8, 2, 6, 7, 4, 3, 4, 6, 5, 8, 4, 4, 6, 5, 5, 5, 5, 6, 8, 4, 6, 7, 4, 6, 10, 4, 4, 7, 5, 2, 10, 4, 7, 7, 4, 8, 4, 4, 7, 8, 2, 4, 9, 5, 5, 9, 5, 5, 7, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 11 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Equivalently, any positive integer n can be written as a^2 + b*(b+1) + 2^c*5^(3d) with a,b,c,d nonnegative integers.
This was motivated by A308584, and we verified a(n) > 0 for all n = 1..2*10^8. Then, on the author's request, Giovanni Resta verified the above conjecture for n up to 10^10. G. Resta also noted that 7272774228 cannot be written as a*(a+1)/2 + b*(b+1)/2 + 2^c*250^d with a,b,c,d nonnegative integers.
See also A308566, A308584 and A308623 for similar conjectures.

Examples

			a(1) = 1 with 1 = 0*1/2 + 0*1/2 + 2^0*5^(3*0).
a(78210) = 1 with 78210 = 85*86/2 + 385*386/2 + 2*5^3.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-5^(3k)*2^m-x(x+1)/2],r=r+1],{k,0,Log[5,n]/3},{m,0,Log[2,n/5^(3k)]},{x,0,(Sqrt[4(n-5^(3k)*2^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A013599 a(n) = nextprime(5^n) - 5^n.

Original entry on oeis.org

1, 2, 4, 2, 6, 12, 4, 12, 22, 26, 4, 14, 58, 6, 12, 42, 24, 2, 12, 56, 48, 24, 18, 38, 58, 14, 12, 38, 34, 62, 28, 92, 214, 122, 102, 168, 136, 18, 48, 102, 108, 126, 18, 126, 76, 108, 22, 204, 52, 122, 96, 114, 94, 14, 52, 38, 58, 248, 64, 56, 16, 102, 106
Offset: 0

Views

Author

James Kilfiger (mapdn(AT)csv.warwick.ac.uk)

Keywords

Crossrefs

Programs

  • Maple
    seq(nextprime(5^i)-5^i, i=0..100);
  • Mathematica
    NextPrime[#]-#&/@(5^Range[0,70]) (* Harvey P. Dale, Sep 29 2011 *)
  • PARI
    a(n) = nextprime(5^n+1) - 5^n; \\ Michel Marcus, Jun 14 2020

Formula

a(n) = A151800(5^n)-5^n = A054321(n)-5^n = A013632(5^n). - R. J. Mathar, Nov 28 2016

A013620 Triangle of coefficients in expansion of (2+3x)^n.

Original entry on oeis.org

1, 2, 3, 4, 12, 9, 8, 36, 54, 27, 16, 96, 216, 216, 81, 32, 240, 720, 1080, 810, 243, 64, 576, 2160, 4320, 4860, 2916, 729, 128, 1344, 6048, 15120, 22680, 20412, 10206, 2187, 256, 3072, 16128, 48384, 90720, 108864, 81648, 34992, 6561, 512
Offset: 0

Views

Author

Keywords

Comments

Row sums give A000351; central terms give A119309. - Reinhard Zumkeller, May 14 2006

Examples

			Triangle begins:
1;
2,3;
4,12,9;
8,36,54,27;
16,96,216,216,81;
		

Crossrefs

Programs

  • Haskell
    a013620 n k = a013620_tabl !! n !! k
    a013620_row n = a013620_tabl !! n
    a013620_tabl = iterate (\row ->
       zipWith (+) (map (* 2) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013, Apr 02 2011
  • Mathematica
    Flatten[Table[Binomial[i, j] 2^(i-j) 3^j, {i, 0, 10}, {j, 0, i}]] (* Vincenzo Librandi, Apr 22 2014 *)

Formula

G.f.: 1 / [1 - x(2+3y)].
T(n,k) = A007318(n,k) * A036561(n,k). - Reinhard Zumkeller, May 14 2006

A025622 Numbers of form 5^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 5, 6, 25, 30, 36, 125, 150, 180, 216, 625, 750, 900, 1080, 1296, 3125, 3750, 4500, 5400, 6480, 7776, 15625, 18750, 22500, 27000, 32400, 38880, 46656, 78125, 93750, 112500, 135000, 162000, 194400, 233280, 279936, 390625, 468750, 562500, 675000
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000351 (subset), A000400 (another subset), A025651 (exponent of 5).

Programs

  • Mathematica
    n = 10^6; Flatten[Table[5^i*6^j, {i, 0, Log[5, n]}, {j, 0, Log[6, n/5^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (5*6)/((5-1)*(6-1)) = 3/2. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(5)*log(6)*n)) / sqrt(30). - Vaclav Kotesovec, Sep 25 2020
a(n) = 5^A025651(n) *6^A025659(n). - R. J. Mathar, Jul 06 2025

A032122 Number of reversible strings with n beads of 5 colors.

Original entry on oeis.org

1, 5, 15, 75, 325, 1625, 7875, 39375, 195625, 978125, 4884375, 24421875, 122078125, 610390625, 3051796875, 15258984375, 76294140625, 381470703125, 1907349609375, 9536748046875, 47683720703125
Offset: 0

Views

Author

Keywords

Examples

			For a(2)=15, the five achiral strings are AA, BB, CC, DD, and EE; the 10 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, AE-EA, BC-CB, BD-DB, BE-EB, CD-DC, CE-EC, and DE-ED.
		

Crossrefs

Column 5 of A277504.
Cf. A000351 (oriented), A032088(n>1) (chiral), A056451 (achiral).

Programs

  • Magma
    I:=[1, 5, 15]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2)-25*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 31 2012
    
  • Mathematica
    LinearRecurrence[{5, 5, -25}, {1, 5, 15}, 31] (* Vincenzo Librandi, Jan 31 2012 *)
    k=5; Table[(k^n+k^Ceiling[n/2])/2,{n,0,30}] (*Robert A. Russell, Nov 25 2017*)
  • PARI
    a(n)=(5^((n+1)\2)+5^n)/2 \\ Charles R Greathouse IV, Jan 31 2012

Formula

"BIK" (reversible, indistinct, unlabeled) transform of 5, 0, 0, 0...
a(n) = 1/2 * (5^n + 5^floor((n+1)/2)) = 5*A001447(n+1). - Ralf Stephan, Jul 07 2003
G.f.: (1-15*x^2) / ((1-5*x)*(1-5*x^2)). - Colin Barker, Jan 30 2012 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = 5*a(n-1) + 5*a(n-2) - 25*a(n-3). - Vincenzo Librandi, Jan 31 2012
a(n) = (A000351(n) + A056451(n)) / 2. - Robert A. Russell, Nov 10 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 10 2018

A038220 Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.

Original entry on oeis.org

1, 3, 2, 9, 12, 4, 27, 54, 36, 8, 81, 216, 216, 96, 16, 243, 810, 1080, 720, 240, 32, 729, 2916, 4860, 4320, 2160, 576, 64, 2187, 10206, 20412, 22680, 15120, 6048, 1344, 128, 6561, 34992, 81648, 108864, 90720, 48384, 16128, 3072, 256
Offset: 0

Views

Author

Keywords

Comments

Row sums give A000351; central terms give A119309. - Reinhard Zumkeller, May 14 2006
Triangle of coefficients in expansion of (3 + 2x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 23 2018

Examples

			Triangle begins:
   1;
   3,   2;
   9,  12,   4;
  27,  54,  36,   8;
  81, 216, 216,  96,  16;
  ...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Programs

  • Haskell
    a038220 n k = a038220_tabl !! n !! k
    a038220_row n = a038220_tabl !! n
    a038220_tabl = iterate (\row ->
       zipWith (+) (map (* 3) (row ++ [0])) (map (* 2) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013, Apr 02 2011
    
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 t[n - 1, k] + 2 t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[ Expand[(3 + 2x)^n], x], {n, 0, 9}] // Flatten  (* Zagros Lalo, Jul 23 2018 *)
    Table[CoefficientList[Binomial[i, j] *3^(i - j)*2^j, x], {i, 0, 9}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
  • PARI
    T(i,j)=binomial(i,j)*3^(i-j)*2^j \\ Charles R Greathouse IV, Jul 19 2016

Formula

T(n,k) = A007318(n,k) * A036561(n,k). - Reinhard Zumkeller, May 14 2006
G.f.: 1/(1 - 3*x - 2*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(0,0) = 1; T(n,k) = 3 T(n-1,k) + 2 T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 23 2018

A049303 Numbers k such that k is a substring of 5^k.

Original entry on oeis.org

2, 5, 6, 7, 9, 19, 25, 32, 34, 36, 41, 54, 55, 56, 59, 62, 64, 67, 69, 70, 71, 75, 80, 81, 82, 84, 86, 87, 89, 92, 93, 95, 96, 111, 115, 125, 128, 140, 163, 166, 177, 178, 189, 192, 205, 212, 219, 221, 226, 233, 236, 242, 258, 259, 267, 294, 303, 309, 323, 327, 329
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    ss5nQ[n_]:=Module[{len=IntegerLength[n]},MemberQ[Partition[ IntegerDigits[ 5^n], len,1],IntegerDigits[n]]]; Select[Range[400],ss5nQ] (* Harvey P. Dale, Jan 06 2013 *)
    Select[Range[350],SequenceCount[IntegerDigits[5^#],IntegerDigits[#]]>0&] (* Harvey P. Dale, Dec 27 2024 *)

A066770 a(n) = 5^n*sin(2n*arctan(1/2)) or numerator of tan(2n*arctan(1/2)).

Original entry on oeis.org

4, 24, 44, -336, -3116, -10296, 16124, 354144, 1721764, 1476984, -34182196, -242017776, -597551756, 2465133864, 29729597084, 116749235904, -42744511676, -3175197967656, -17982575014036, -28515500892816, 278471369994004, 2383715742284424, 7340510203856444
Offset: 1

Views

Author

Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.

Crossrefs

Cf. A066771, A000351 powers of 5 and also hypotenuse of right triangle with legs given by A066770 and A066771.
Note that A066770, A066771 and A000351 are primitive Pythagorean triples with hypotenuse 5^n. The offset of A000351 is zero, but the offset is 1 for A066770, A066771.

Programs

  • Maple
    a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(numer(a[n])), n=1..40);# a[n]=tan(2n arctan(1/2))
  • Mathematica
    Table[ 5^n*Sin[2*n*ArcCot[2]] // Simplify, {n, 1, 23}] (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    a(n)=imag((2+I)^(2*n))

Formula

G.f.: 4*x/(1-6*x+25*x^2). - Ralf Stephan, Jun 12 2003
a(n) = 5^n*sin(2*n*arctan(1/2)). A recursive formula for T(n) = tan(2*n*arctan(1/2)) is T(n+1) = (4/3+T(n))/(1-4/3*T(n)). Unsigned a(n) is the absolute value of numerator of T(n).
a(n) is the imaginary part of (2+I)^(2*n) = Sum_{k=0..n} 2^(2*n-2*k-1)*(-1)^k*binomial(2*n, 2*k+1). - Benoit Cloitre, Aug 03 2002
a(n) = 6*a(n-1)-25*a(n-2), n>2. - Gary Detlefs, Dec 11 2010
a(n) = 5^n*sin(n*x), where x = arcsin(4/5) = 0.927295218.. . - Gary Detlefs, Dec 11 2010

A081143 5th binomial transform of (0,0,0,1,0,0,0,0,......).

Original entry on oeis.org

0, 0, 0, 1, 20, 250, 2500, 21875, 175000, 1312500, 9375000, 64453125, 429687500, 2792968750, 17773437500, 111083984375, 683593750000, 4150390625000, 24902343750000, 147857666015625, 869750976562500, 5073547363281250
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, four-fold convolution of A000351 (powers of 5).
With a different offset, number of n-permutations (n=4)of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly three u's. Example: a(4)=20 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu, xuuu, uuuy, uuyu, uyuu and yuuu. - Zerinvary Lajos, Jun 03 2008

Crossrefs

Programs

  • Magma
    [5^(n-3) * Binomial(n, 3): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
    
  • Maple
    seq(binomial(n,3)*5^(n-3), n=0..25); # Zerinvary Lajos, Jun 03 2008
  • Mathematica
    CoefficientList[Series[x^3/(1-5x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{20,-150,500,-625}, {0,0,0,1}, 30] (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    vector(31, n, my(m=n-1); 5^(m-3)*binomial(m,3)) \\ G. C. Greubel, Mar 05 2020
  • Sage
    [lucas_number2(n, 5, 0)*binomial(n,3)/5^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = 20*a(n-1) - 150*a(n-2) + 500*a(n-3) - 625*a(n-4), with a(0)=a(1)=a(2)=0, a(3)=1.
a(n) = 5^(n-3)*binomial(n,3).
G.f.: x^3/(1-5*x)^4.
E.g.f.: x^3*exp(x)/6. - G. C. Greubel, Mar 05 2020
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 240*log(5/4) - 105/2.
Sum_{n>=3} (-1)^(n+1)/a(n) = 540*log(6/4) - 195/2. (End)
Previous Showing 91-100 of 324 results. Next