cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 162 results. Next

A047853 a(n) = A047848(5, n).

Original entry on oeis.org

1, 2, 10, 74, 586, 4682, 37450, 299594, 2396746, 19173962, 153391690, 1227133514, 9817068106, 78536544842, 628292358730, 5026338869834, 40210710958666, 321685687669322, 2573485501354570, 20587884010836554, 164703072086692426, 1317624576693539402, 10540996613548315210
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is A000420(n-1) for n >= 1.

Crossrefs

Programs

  • Magma
    [(8^n +6)/7: n in [0..40]]; // G. C. Greubel, Jan 12 2025
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=8*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    LinearRecurrence[{9, -8}, {1, 2}, 30] (* Harvey P. Dale, Dec 11 2016 *)
    (8^Range[0,40] +6)/7 (* G. C. Greubel, Jan 12 2025 *)
  • Python
    def A047853(n): return (pow(8,n) +6)//7
    print([A047853(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025

Formula

a(n) = (8^n + 6)/7. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 05 2009: (Start)
a(0)=1, a(1)=2; a(n) = 9*a(n-1) - 8*a(n-2) for n>1.
G.f.: (1 - 7*x)/(1 - 9*x + 8*x^2). (End)
a(n) = 8*a(n-1) - 6 for n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n+1) = A226308(3*n). - Philippe Deléham, Feb 24 2014
E.g.f.: exp(x)*(6 + exp(7*x))/7. - Stefano Spezia, Oct 16 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 07 2008

A165828 Totally multiplicative sequence with a(p) = 7.

Original entry on oeis.org

1, 7, 7, 49, 7, 49, 7, 343, 49, 49, 7, 343, 7, 49, 49, 2401, 7, 343, 7, 343, 49, 49, 7, 2401, 49, 49, 343, 343, 7, 343, 7, 16807, 49, 49, 49, 2401, 7, 49, 49, 2401, 7, 343, 7, 343, 343, 49, 7, 16807, 49, 343
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    7^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 7^bigomega(n); \\ Altug Alkan, Apr 09 2016

Formula

a(n) = A000420(A001222(n)) = 7^bigomega(n) = 7^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 7 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A175169 Numbers k that divide the sum of digits of 2^k.

Original entry on oeis.org

1, 2, 5, 70
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

No other terms <= 200000. - Harvey P. Dale, Dec 16 2010
No other terms <= 1320000. - Robert G. Wilson v, Dec 18 2010
There are almost certainly no further terms.

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

A175525 Numbers k that divide the sum of digits of 13^k.

Original entry on oeis.org

1, 2, 5, 140, 158, 428, 788, 887, 914, 1814, 1895, 1976, 2579, 2732, 3074, 3299, 3641, 4658, 4874, 5378, 5423, 5504, 6170, 6440, 6944, 8060, 8249, 8915, 9041, 9158, 9725, 9824, 10661, 11291, 13820, 15305, 17051, 17393, 18716, 19589, 20876, 21641, 23756, 24188, 25961, 28409, 30632, 31307, 32387, 33215, 34970, 35240, 36653, 36977, 41558, 43970, 44951, 47444, 51764, 52655, 53375, 53852, 54104, 56831, 57506, 59153, 66479, 68063, 73562, 78485, 79286, 87908, 92093, 102029, 106934, 114854, 116321, 134051, 139397, 184037, 192353, 256469, 281381, 301118, 469004
Offset: 1

Views

Author

T. D. Noe, Dec 03 2010

Keywords

Comments

Almost certainly there are no further terms.
Comments from Donovan Johnson on the computation of this sequence, Dec 05 2010 (Start):
The number of digits of 13^k is approximately 1.114*k, so I defined an array d() that is a little bigger than 1.114 times the maximum k value to be checked. The elements of d() each are the value of a single digit of the decimal expansion of 13^k with d(1) being the least significant digit.
It's easier to see how the program works if I start with k = 2.
For k = 1, d(2) would have been set to 1 and d(1) would have been set to 3.
k = 2:
x = 13*d(1) = 13*3 = 39
y = 39\10 = 3 (integer division)
x-y*10 = 39-30 = 9, d(1) is set to 9
x = 13*d(2)+y = 13*1+3 = 16, y is the carry from previous digit
y = 16\10 = 1
x-y*10 = 16-10 = 6, d(2) is set to 6
x = 13*d(3)+y = 13*0+1 = 1, y is the carry from previous digit
y = 1\10 = 0
x-y*10 = 1-0 = 1, d(3) is set to 1
These steps would of course be inside a loop and that loop would be inside a k loop. A pointer to the most significant digit increases usually by one and sometimes by two for each successive k value checked. The number of steps of the inner loop is the size of the pointer. A scan is done from the first element to the pointer element to get the digit sum.
(End)
No other terms < 3*10^6. - Donovan Johnson, Dec 07 2010

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Select[Range[1000], Mod[Total[IntegerDigits[13^#]], #] == 0 &]

Extensions

a(47)-a(79) from N. J. A. Sloane, Dec 04 2010
a(80)-a(85) from Donovan Johnson, Dec 05 2010

A109808 a(n) = 2*7^(n-1).

Original entry on oeis.org

2, 14, 98, 686, 4802, 33614, 235298, 1647086, 11529602, 80707214, 564950498, 3954653486, 27682574402, 193778020814, 1356446145698, 9495123019886, 66465861139202, 465261027974414, 3256827195820898, 22797790370746286, 159584532595224002, 1117091728166568014
Offset: 1

Views

Author

Woong Kook (andrewk(AT)math.uri.edu), Aug 16 2005

Keywords

Comments

Value of Tutte dichromatic polynomial T_G(0,1) where G is the Cartesian product of the paths P_2 and P_n (n>1).
The value of Tutte dichromatic polynomial T_G(0,1) where G is the Cartesian product of the paths P_1 and P_n (n>1) is seen to be 2^(n-1), which is also the number of edge-rooted forests in P_n.
In 1956, Andrzej Schinzel showed that for every n >= 2, a(n) is not a value of Euler's function. - Arkadiusz Wesolowski, Oct 20 2013
Apart from first term 2, these are the numbers that satisfy phi(n) = 3*n/7. - Michel Marcus, Jul 14 2015

Crossrefs

Cf. A000420 (powers of 7), A005277 (nontotients), A132023.

Programs

Formula

a(n) = 2*7^(n-1); a(n) = 7*a(n-1) where a(1) = 2.
G.f.: 2*x/(1 - 7*x). - Philippe Deléham, Nov 23 2008
E.g.f.: 2*(exp(7*x) - 1)/7. - Stefano Spezia, May 29 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 7/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/16.
Product_{n>=1} (1 - 1/a(n)) = A132023. (End)

Extensions

Name changed by Arkadiusz Wesolowski, Oct 20 2013

A128965 a(n) = (n^3 - n)*7^n.

Original entry on oeis.org

0, 294, 8232, 144060, 2016840, 24706290, 276710448, 2905459704, 29054597040, 279650496510, 2610071300760, 23751648836916, 211605598728888, 1851548988877770, 15951806673408480, 135590356723972080, 1138958996481365472, 9467596658251350486, 77968443067952298120
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 - n)*7^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    LinearRecurrence[{28, -294, 1372, -2401}, {0, 294, 8232, 144060}, 30] (* Vincenzo Librandi, Feb 11 2013 *)
    Table[(n^3-n)7^n,{n,20}] (* Harvey P. Dale, May 14 2020 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 294x^2/(1-7x)^4.
a(n) = 294*A140107(n-2). (End)
a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000420(n).
Sum_{n>=2} 1/a(n) = (18/7)*log(7/6) - 11/28.
Sum_{n>=2} (-1)^n/a(n) = (32/7)*log(8/7) - 17/28. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A175552 Numbers k such that the digit sum of 167^k is divisible by k.

Original entry on oeis.org

1, 2, 5, 7, 22, 490, 724, 778, 868, 994, 1109, 1390, 1415, 1462, 1642, 1739, 1829, 2146, 2362, 3136, 4954, 6437, 6628, 7103, 11200, 12424, 12863, 14242, 14249, 15059, 15203, 16222, 17140, 18353, 19192, 21233, 22853, 24106, 24574, 24833, 26896, 27652, 28253, 30323, 31306, 31594, 32386, 33790, 34985, 36184, 36310, 40673, 42196, 43931, 45911, 45983
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

From Donovan Johnson, Dec 03 2010: (Start)
To generate the additional terms I used PFGW.exe to get the decimal expansion for each number of the form 167^n (n <= 50000). Then I wrote a program in powerbasic to read the pfgw.out file and get the digit sums.
The digit sum is 10 times the n value for terms a(5) to a(56). (End)
I believe that this sequence is finite. - N. J. A. Sloane, Dec 05 2010

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Select[Range[10000], Mod[Total[IntegerDigits[167^#]], #] == 0 &]

Extensions

a(25)-a(56) from Donovan Johnson, Dec 03 2010

A212701 Main transitions in systems of n particles with spin 3.

Original entry on oeis.org

6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=7 (see formula), corresponding to spin S=(b-1)/2=3.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212702, A212703, A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).

Programs

  • Mathematica
    LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
    
  • PARI
    Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=7.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 14*a(n-1) - 49*a(n-2) for n > 2.
G.f.: 6*x/(7*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 6*x*exp(7*x).
a(n) = 6*A027473(n) = A008588(n)*A000420(n-1). (End)

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A013613 Triangle of coefficients in expansion of (1+6x)^n.

Original entry on oeis.org

1, 1, 6, 1, 12, 36, 1, 18, 108, 216, 1, 24, 216, 864, 1296, 1, 30, 360, 2160, 6480, 7776, 1, 36, 540, 4320, 19440, 46656, 46656, 1, 42, 756, 7560, 45360, 163296, 326592, 279936, 1, 48, 1008, 12096, 90720, 435456, 1306368, 2239488, 1679616
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle begins:
1;
1, 6;
1, 12, 36;
1, 18, 108, 216;
1, 24, 216, 864, 1296;
...
		

Crossrefs

Cf. A038255 (mirrored).

Programs

  • Haskell
    import Data.List (inits)
    a013613 n k = a013613_tabl !! n !! k
    a013613_row n = a013613_tabl !! n
    a013613_tabl = zipWith (zipWith (*))
                   (tail $ inits a000400_list) a007318_tabl
    -- Reinhard Zumkeller, Nov 21 2013

Formula

G.f.: 1 / (1 - x(1+6y)).
T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - Mircea Merca, Apr 28 2012
T(n,k) = A007318(n,k)*A000400(k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013
Previous Showing 31-40 of 162 results. Next