cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 288 results. Next

A080955 Square array of numbers related to the incomplete gamma function, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 10, 16, 24, 1, 5, 17, 38, 65, 120, 1, 6, 26, 78, 168, 326, 720, 1, 7, 37, 142, 393, 872, 1957, 5040, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1, 10, 82, 538, 2760, 10970, 34960, 100026
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Examples

			Array begins:
k=0: 1 1 2 6 24 ...
k=1: 1 2 5 16 65 ...
k=2: 1 3 10 38 168 ...
k=3: 1 4 17 78 393 ...
k=4: 1 5 26 142 824 ...
...
		

Crossrefs

Transposed version: A089258.

Programs

  • Mathematica
    T[0, k_] := k!; T[n_, k_] := k!*Sum[n^j/j!, {j, 0, k}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2018 *)

Formula

T(k,n) = n! * Sum{j=0..n} k^j/j!.
E.g.f. of k-th row: exp(k*x)/(1-x).
T(k,n) = A089258(n,k).

Extensions

Corrected by Philippe Deléham, Dec 12 2003

A089258 Transposed version of A080955: T(n,k) = A080955(k,n), n>=0, k>=-1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 9, 1, 4, 10, 16, 24, 44, 1, 5, 17, 38, 65, 120, 265, 1, 6, 26, 78, 168, 326, 720, 1854, 1, 7, 37, 142, 393, 872, 1957, 5040, 14833, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 133496, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1334961
Offset: 0

Views

Author

Philippe Deléham, Dec 12 2003

Keywords

Comments

Can be extended to columns with negative indices k<0 via T(n,k) = A292977(n,-k). - Max Alekseyev, Mar 06 2018

Examples

			n\k -1   0   1    2    3    4     5     6  ...
----------------------------------------------
0  | 1,  1,  1,   1,   1,   1,    1,    1, ...
1  | 0,  1,  2,   3,   4,   5,    6,    7, ...
2  | 1,  2,  5,  10,  17,  26,   37,   50, ...
3  | 2,  6, 16,  38,  78, 152,  236,  366, ...
4  | 9, 24, 65, 168, 393, 824, 1569, 2760, ...
...
		

Crossrefs

Main diagonal gives A217701.

Programs

  • Mathematica
    (* Assuming offset (0, 0): *)
    T[n_, k_] := Exp[k - 1] Gamma[n + 1, k - 1];
    Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, Dec 24 2021 *)

Formula

For n > 0, k >= -1, T(n,k) is the permanent of the n X n matrix with k+1 on the diagonal and 1 elsewhere.
T(0,k) = 1.
T(n,k) = Sum_{j>=0} A008290(n,j) * (k+1)^j.
T(n,k) = n*T(n-1, k) + k^n .
T(n,k) = n! * Sum_{j=0..n} k^j/j!.
E.g.f. for k-th column: exp(k*x)/(1-x).
Assuming n >= 0, k >= 0: T(n, k) = exp(k-1)*Gamma(n+1, k-1). - Peter Luschny, Dec 24 2021

Extensions

Edited and changed offset for k to -1 by Max Alekseyev, Mar 08 2018

A093658 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)]], with M(0) = [1].

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 6, 2, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 6, 2, 2, 1, 0, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 6, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 1
Offset: 1

Views

Author

Paul D. Hanna, Apr 08 2004

Keywords

Comments

Related to factorials, the incomplete gamma function (A010842) and the total number of arrangements of sets (A000522).
First column forms A093659, where A093659(2^n) = n! for n>=0.
Row sums form A093660, where A093660(2^n) = A000522(n) for n>=0.
Partial sums of the row sums form A093661, where A093661(2^n) = A010842(n) for n>=0.

Examples

			Let M(n) be the lower triangular matrix formed from the first 2^n rows.
To generate M(3) from M(2), take the matrix square of M(2):
[1,0,0,0]^2=[1,0,0,0]
[1,1,0,0]...[2,1,0,0]
[1,0,1,0]...[2,0,1,0]
[2,1,1,1]...[6,2,2,1]
and append M(2)^2 to the bottom left corner and M(2) to the bottom right:
[1],
[1,1],
[1,0,1],
[2,1,1,1],
.........
[1,0,0,0],[1],
[2,1,0,0],[1,1],
[2,0,1,0],[1,0,1],
[6,2,2,1],[2,1,1,1].
Repeating this process converges to triangle A093658.
		

Crossrefs

Formula

T(2^n, 1) = n! for n>=0.

A123899 a(n) = (n+1)!/(d(n)*d(n+1)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

1, 2, 3, 12, 60, 360, 252, 2016, 36288, 362880, 4989600, 11975040, 622702080, 8717829120, 65383718400, 5230697472000, 2736057139200, 49249028505600, 30411275102208, 608225502044160, 25545471085854720000
Offset: 0

Views

Author

Jonathan Sondow, Oct 18 2006

Keywords

Examples

			a(2) = 3 because (2+1)!/(d(2)*d(3)) = 3!/(gcd(2,5)*gcd(6,16)) = 6/2 = 3.
		

Crossrefs

Programs

  • Mathematica
    (A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+1)!/(d[n]*d[n+1]), {n,0,22}])

Formula

a(n) = (n+1)!/(A093101(n)*A093101(n+1)) where A093101(n)=gcd(n!,1+n+n(n-1)+...+n!).

A123900 a(n) = (n+3)!/(d(n)*d(n+1)*d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

6, 12, 60, 180, 2520, 1008, 18144, 18144, 3991680, 5987520, 155675520, 1089728640, 26153487360, 523069747200, 17784371404800, 12312257126400, 935731541606400, 4678657708032, 12772735542927360, 140500090972200960
Offset: 0

Views

Author

Jonathan Sondow, Oct 18 2006

Keywords

Examples

			a(2) = 60 because (2+3)!/(d(2)*d(3)*d(4)) = 5!/(GCD(2,5)*GCD(6,16)*GCD(24,65)) = 120/2 = 60.
		

Crossrefs

Programs

  • Mathematica
    (A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+3)!/(d[n]*d[n+1]*d[n+2]), {n,0,21}])

Formula

a(n) = (n+3)!/(A093101(n)*A093101(n+1)*A093101(n+2)) where A093101(n) = gcd(n!,1+n+n(n-1)+...+n!).

A286286 a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1.

Original entry on oeis.org

0, 1, 4, 21, 148, 1333, 14664, 190633, 2859496, 48611433, 923617228, 19395961789, 446107121148, 11152678028701, 301122306774928, 8732546896472913, 270708953790660304, 8933395475091790033, 312668841628212651156, 11568747140243868092773
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2017

Keywords

Crossrefs

Conjectured to give indices of records in A132424.
Cf. A001147, A002627 (similar sequence), A000522, A060196.

Programs

  • Mathematica
    NestList[{(2 #2 - 1) #1 + 1, #2 + 1} & @@ # &, {0, 1}, 19][[All, 1]] (* Michael De Vlieger, Dec 10 2021 *)

Formula

a(n) = (2*n-1)!! * Sum_{k=1..n} 1/(2*k-1)!!. - Seiichi Manyama, Sep 02 2017
a(n) = floor((2*n-1)!!*A060196), for n > 0. - Peter McNair, Dec 10 2021
From Peter Bala, Feb 09 2024: (Start)
a(n) = 2*n*a(n-1) - (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.
The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} 1/(2*k-1)!! = A060196 = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). (End)

A337002 a(n) = n! * Sum_{k=0..n} k^4 / k!.

Original entry on oeis.org

0, 1, 18, 135, 796, 4605, 28926, 204883, 1643160, 14795001, 147960010, 1627574751, 19530917748, 253901959285, 3554627468406, 53319412076715, 853110593292976, 14502880086064113, 261051841549259010, 4959984989436051511, 99199699788721190220
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Comments

Exponential convolution of fourth powers (A000583) and factorial numbers (A000142).

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]
  • PARI
    a(n) = n! * sum(k=0, n, k^4/k!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: x * (1 + 7*x + 6*x^2 + x^3) * exp(x) / (1 - x).
a(0) = 0; a(n) = n * (n^3 + a(n-1)).
a(n) ~ 15*exp(1)*n!. - Vaclav Kotesovec, Jan 13 2024

A371318 E.g.f. satisfies A(x) = exp(x) + x*A(x)^3.

Original entry on oeis.org

1, 2, 13, 190, 4345, 135346, 5345749, 256004974, 14416470961, 933597699202, 68358972056221, 5584583237569150, 503607231488672425, 49690178089937051122, 5325031693664693833957, 615922452708451717999726, 76479190243720703567763553
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(2 k + 1)^(n - k - 1)*Binomial[3 k, k]/(n - k)!, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(n-k-1)*binomial(3*k, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (2*k+1)^(n-k-1) * binomial(3*k,k)/(n-k)!.
a(n) ~ sqrt(1 + LambertW(8/27)) * 2^n * n^(n-1) / (3 * exp(n) * LambertW(8/27)^(n + 1/2)). - Vaclav Kotesovec, Jun 01 2024

A056547 a(n) = 6*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 7, 85, 1531, 36745, 1102351, 39684637, 1666754755, 80004228241, 4320228325015, 259213699500901, 17108104167059467, 1231783500028281625, 96079113002205966751, 8070645492185301207085, 726358094296677108637651
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Examples

			a(2) = 6*2*a(1) + 1 = 12*7 + 1 = 85.
		

Crossrefs

Cf. A000522, A010844, A010845, A056545, A056546 for analogs. A056547/(A000142*A000400) is an increasingly good approximation to 6th root of e.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,6a(n+1)+1}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Jul 17 2024 *)

Formula

a(n) = floor(e^(1/6)*6^n*n!).
a(n) = n!*Sum_{k=0..n} 6^(n-k)/k!. E.g.f.: exp(x)/(1 - 6*x). - Philippe Deléham, Mar 14 2004
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x = 0..inf} (6*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 6*x) satisfies the differential equation (1 - 6*x)*y' = (7 - 6*x)*y.
a(n) = (6*n + 1)*a(n-1) - 6*(n - 1)*a(n-2).
The sequence b(n) := 6^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = 6^n*n!*( 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/(6*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/6) = 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/((6*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A076571 Binomial triangle based on factorials.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 24, 30, 38, 49, 65, 120, 144, 174, 212, 261, 326, 720, 840, 984, 1158, 1370, 1631, 1957, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 13700, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 109601
Offset: 0

Views

Author

Henry Bottomley, Oct 19 2002

Keywords

Examples

			Rows start:
    1;
    1,   2;
    2,   3,   5;
    6,   8,  11,  16;
   24,  30,  38,  49,  65;
  120, 144, 174, 212, 261, 326;
		

Crossrefs

Right hand columns include A000522, A001339, A001340, A001341, A001342.
Cf. A002627 (row sums), A099022.

Programs

  • Magma
    A076571:= func< n,k| (&+[Binomial(k,j)*Factorial(n-j): j in [0..k]]) >;
    [A076571(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Mathematica
    A076571[n_, k_]:= n!*Hypergeometric1F1[-k,-n,1];
    Table[A076571[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A076571(n,k): return sum(binomial(k,j)*factorial(n-j) for j in range(k+1))
    flatten([[A076571(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, k) = Sum_{j=0..k} binomial(k, j)*(n-j)!.
T(n, k) = T(n, k-1) + T(n-1, k-1) with T(n, 0) = n!.
T(n, n) = A000522(n).
Sum_{k=0..n} T(n, k) = A002627(n+1).
From G. C. Greubel, Oct 05 2023: (Start)
T(n, k) = n! * Hypergeometric1F1([-k], [-n], 1).
T(2*n, n) = A099022(n). (End)
Previous Showing 101-110 of 288 results. Next