cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 303 results. Next

A382754 List of unlabeled simple graphs, encoded as integers (see comments).

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 11, 15, 64, 65, 67, 71, 75, 76, 77, 79, 94, 95, 127, 1024, 1025, 1027, 1031, 1039, 1043, 1044, 1045, 1047, 1052, 1053, 1055, 1078, 1079, 1082, 1083, 1086, 1087, 1150, 1151, 1207, 1208, 1209, 1211, 1215, 1231, 1244, 1245, 1247, 1278, 1279, 1519, 1535, 2047
Offset: 0

Views

Author

Pontus von Brömssen, Apr 04 2025

Keywords

Comments

For a graph G, pick a permutation of its vertices that minimizes the bitstring obtained by reading the lower triangular part of the corresponding adjacency matrix by rows. The code of G is that bitstring interpreted as a binary number plus 2^(v*(v-1)/2), where v is the number of vertices of G; see example. As a special case, the code of the null graph is 0. The sequence consists of all such minimal codes.
For n >= 1, the numbers of vertices and edges of the graph with code a(n) are A002024(A000523(a(n))+1) and A000120(a(n))-1 = A382758(n), respectively.
This sequence can be used to define sequences for:
- graph invariants (examples: A382758, A382759, A382760);
- graph operators, either by code (A382763) or by index (A382764);
- lists of subsets of graphs, either by code (A382761) or by index (A382762).

Examples

			As an irregular triangle, where row n >= 0 contains A000088(n) terms:
   0;
   1;
   2,  3;
   8,  9, 11, 15;
  64, 65, 67, 71, 75, 76, 77, 79, 94, 95, 127;
  ...
71 is a term, because it is the code of the claw graph. If the edges are taken to be (0,1), (0,2), and (0,3), an optimal permutation of the vertices of the graph is (3, 2, 1, 0), with the lower triangular part of the corresponding adjacency matrix being [0; 0,0; 1,1,1]. Adding 2^(4*3/2) to the binary number 000111, we obtain that the code of the claw graph is 64+7 = 71.
		

Crossrefs

A056744 a(n) is the smallest number which when written in binary contains as substrings the binary expansions of 1..n.

Original entry on oeis.org

1, 2, 6, 12, 44, 44, 92, 184, 1208, 1256, 4792, 4792, 9912, 9912, 19832, 39664, 563952, 576464, 4496112, 4499184, 17996528, 17997488, 143972080, 143972080, 145057520, 145070832, 294967024, 294967024, 589944560, 589944560, 1179889136, 2359778272, 71079255008
Offset: 1

Views

Author

Fred J. Schalekamp, Aug 15 2000

Keywords

Comments

From Davis Smith, May 09 2021: (Start)
For n > 2, a(n) cannot be a power of 2.
If A007088(n) (the binary expansion of n) contains a string of k zeros, then it contains A007088(2^m), where 0 <= m <= k, as a substring. Similarly, if A007088(n) contains a string of k ones, then it contains A007088(2^m - 1), where 1 <= m <= k. Strings of zeros and ones are the most compact way to have powers of 2 and powers of 2 minus 1 (respectively) as substrings in a binary expansion. This means that A007088(a(n)) will contain a string of A000523(n) ones and a string of A000523(n) zeros. The binary expansion of a(2^k - 1) will contain a string of k ones and a string of k - 1 zeros.
Conjecture: a(n) == 0 (mod A053644(n)), i.e., A007088(a(n)) ends with the longest string of zeros. It follows from this that a(2^k) = 2*a(2^k - 1). A conjecture related to this is that a(2^k - 1) = 2*a(2^k - 2) + 2^(k - 1), i.e., A007088(a(2^k - 1)) ends with the longest string of ones followed by the longest string of zeros. Ending with the longest string of ones followed by the longest string of zeros is not true for all A007088(a(n)), as some have a hiccup before starting their string of zeros, e.g., a(10), a(18), a(22), and a(34).
Conjecture: a(2^k + 1) = 2^(k + floor(log_2(a(2^k)))) + a(2^k), i.e., concatenate the binary expansion of 2^(k - 1) to the front of the binary expansion of a(2^k) in order to get the binary expansion of a(2^k + 1).
(End)
All terms belong to A261467. - Rémy Sigrist, May 11 2021
From Jon E. Schoenfield, Jun 03 2021: (Start)
Conjecture: the binary expansion of a(n) contains exactly ceiling(n/2) 1's iff 2^m - 7 <= n <= 2^m + 6 for some integer m >= 3. (See Links.)
Conjecture: for n > 1, the binary expansion of a(n) begins with that of 2^floor(log_2(n-1)) + 1.(End)
From Davis Smith, Jun 05 2021: (Start)
For a proof that a(n) == 2^floor(log_2(n)) (mod 2^(floor(log_2(n)) + 1)), see my second link (not the b-file). This also proves the conjecture from May 09 2021 which states that it is congruent to 0 (mod A053644(n)). A proof for the related conjecture would likely rely on an explanation of values of n such that a(n) is not congruent to (2^floor(log_2(n)) - 1)*2^floor(log_2(n)) (mod 2^(2*floor(log_2(n)))), i.e. the values of n such that A007088(a(n)) does not end with a string of floor(log_2(n)) ones followed immediately by a string of floor(log_2(n)) zeros. A proof for Jon E. Schoenfield's second conjecture on Jun 03 2021 would satisfy my more restricted second conjecture and it may follow necessarily from my proof, assuming that A007088(a(n)) must begin with either A007088(2^floor(log_2(n - 1)) + 1) or A007088(2^floor(log_2(n))). (End)

Examples

			a(6)=44 because 101100 (44 in base 2) is the smallest number that contains 1, 10, 11, 100, 101 and 110 (1 through 6 in base 2).
Terms begin as follows (see Links for a longer table):
.
                a(n)
      =========================
   n  decimal      binary
  --  -------  ----------------
   1        1                 1
   2        2                10
   3        6               110
   4       12              1100
   5       44            101100
   6       44            101100
   7       92           1011100
   8      184          10111000
   9     1208       10010111000
  10     1256       10011101000
  11     4792     1001010111000
  12     4792     1001010111000
  13     9912    10011010111000
  14     9912    10011010111000
  15    19832   100110101111000
  16    39664  1001101011110000
		

Crossrefs

Programs

  • PARI
    A056744_vec(n)={
        my(
            L=List([1]),x=L[#L],Z=n+#L,B=binary(x),
            A=setbinop((y,z)->fromdigits(B[y..z],2),[1..#B])
        );
        while(#Lfromdigits(B[y..z],2),[1..#B]));listput(L,x));Vec(L)
    } \\ Davis Smith, May 09 2021

Formula

A144016(a(n)) >= n. - Rémy Sigrist, May 11 2021

Extensions

More terms from Naohiro Nomoto, Jul 20 2001
a(25)-a(31) from Ray Chandler, Nov 06 2008
a(32) from Davis Smith, May 10 2021
a(33) from Jon E. Schoenfield, May 11 2021

A212454 Ceiling(5n + log(5n)).

Original entry on oeis.org

7, 13, 18, 23, 29, 34, 39, 44, 49, 54, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(5*n + Log(5*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[5*n + Log[5*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A076877 a(n) = A020330(n) / n.

Original entry on oeis.org

3, 5, 5, 9, 9, 9, 9, 17, 17, 17, 17, 17, 17, 17, 17, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 129, 129, 129, 129, 129, 129
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			12 -> '1100' -> '1100'1100' = '11001100' -> 204 = A020330(12): a(12) = A020330(12)/12 = 204/12 = 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + 2^Floor[Log2[n] + 1]; Array[a, 50] (* Amiram Eldar, Apr 07 2021 *)

Formula

a(n) = 1 + 2^(1 + Log2(n)), with Log2 = A000523.
a(n) = 1 + 2*A053644(n).
a(n) = 1 + A062383(n).

A256341 Numbers which have only digits 8 and 9 in base 10.

Original entry on oeis.org

8, 9, 88, 89, 98, 99, 888, 889, 898, 899, 988, 989, 998, 999, 8888, 8889, 8898, 8899, 8988, 8989, 8998, 8999, 9888, 9889, 9898, 9899, 9988, 9989, 9998, 9999, 88888, 88889, 88898, 88899, 88988, 88989, 88998, 88999, 89888, 89889
Offset: 1

Views

Author

M. F. Hasler, Mar 27 2015

Keywords

Crossrefs

Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5) - A256292 (digits 6 & 7), A256340 (digits 7 & 8).

Programs

  • Magma
    [n: n in [1..35000] | Set(IntegerToSequence(n, 10)) subset {8, 9}];
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {8,9}]; // Vincenzo Librandi, Aug 19 2016
    
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{8,9},n],{n,5}]]
  • PARI
    A256341(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\9*8
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '8').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Aug 09 2021

Formula

a(n) = A007931(n) + A002281(A000523(n+1)) = A256341(n) + A256077(n) etc.

A004233 a(n) = ceiling(log(n)).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Keywords

Comments

Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

Crossrefs

Programs

A007549 Number of increasing rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1

Views

Author

Keywords

Comments

In an increasing rooted graph, nodes are numbered and the numbers increase as you move away from the root.
(a(n+1)/a(n))/n tends to 1/A073003 = 1.676875... (same limit as A029768). - Vaclav Kotesovec, Jul 26 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A029768.
Row sums of A078341. Column k=1 of A264436.

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)

Formula

Shifts left when exponentiated twice.
Conjecture: a(n) = Sum_{i=0..2^(n-2) - 1} b(i) for n > 1 with a(1) = 1 where b(n) = (L(n) + 2)*b(f(n)) + Sum_{k=0..L(n) - 1} (1 - R(n,k))*b(f(n) + 2^k*(1 - R(n,k))) for n > 0 with b(0) = 1, L(n) = A000523(n), f(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2. Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jul 21 2024
Conjecture: a(n) = D^(n-1)(exp(x)) evaluated at x = 0, where D denotes the operator exp(x)*(1 + x)*d/dx. - Peter Bala, Feb 24 2025

Extensions

New description from Christian G. Bower, Oct 15 1998

A030301 n-th run has length 2^(n-1).

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030300. Partial sums give A079954.
Characteristic function of A053754 (after its initial 0).

Programs

  • Magma
    [Floor(Log(n)/Log(2)) mod 2: n in [1..100]]; // Vincenzo Librandi, Jun 23 2015
    
  • Mathematica
    nMax = 7; Table[1 - Mod[n, 2], {n, nMax}, {2^(n-1)}] // Flatten (* Jean-François Alcover, Oct 20 2016 *)
    Table[{PadRight[{},2^(n-1),0],PadRight[{},2^n,1]},{n,1,8,2}]//Flatten (* Harvey P. Dale, Apr 12 2023 *)
  • PARI
    a(n)=if(n<1,0,1-length(binary(n))%2)
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,-a(n/2)+1,-a((n-1)/2)+1-(((n-1)/2)==0))) /* Ralf Stephan */
    
  • Python
    def A030301(n): return n.bit_length()&1^1 # Chai Wah Wu, Jan 30 2023

Formula

a(n) = A000523(n) mod 2 = (A029837(n+1)+1) mod 2.
a(n) = 0 iff n has an odd number of digits in binary, = 1 otherwise. - Henry Bottomley, Apr 06 2000
a(n) = (1/2)*{1-(-1)^floor(log(n)/log(2))}. - Benoit Cloitre, Nov 22 2001
a(n) = 1-a(floor(n/2)). - Vladeta Jovovic, Aug 04 2003
a(n) = 1 - A030300(n). - Antti Karttunen, Oct 10 2017

A054850 Binary logarithm of n-th primorial, rounded down to an integer.

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 18, 23, 27, 32, 37, 42, 48, 53, 59, 64, 70, 76, 82, 88, 95, 101, 107, 114, 120, 127, 134, 140, 147, 154, 161, 168, 175, 182, 189, 197, 204, 211, 219, 226, 234, 241, 249, 256, 264, 272, 279, 287, 295, 303, 311, 318, 326, 334, 342, 350, 358, 367
Offset: 1

Views

Author

Lekraj Beedassy, May 22 2003

Keywords

Comments

A measure of the growth rate of the primorials.

Examples

			The product of the first four primes is 2 * 3 * 5 * 7 = 210. In binary, 210 is 11010010, an 8-bit number, and we see that 2^7 < 210 < 2^8. And indeed log_2 210 = 7.7142455... and thus a(4) = 7.
a(5) = floor(log_2 2310) = floor(11.1736771363...) = 11.
		

Crossrefs

Equals A045716(n) - 1.

Programs

  • Maple
    a := n -> ilog2(mul(ithprime(i), i=1..n)):
    seq(a(n), n=1..58); # Peter Luschny, Oct 18 2018
  • Mathematica
    Table[Floor[Log[2, Product[Prime[i], {i, n}]]], {n, 60}]
    Floor[Log2[#]]&/@FoldList[Times,Prime[Range[60]]] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    a(n) = logint(prod(k=1, n, prime(k)), 2); \\ Michel Marcus, Jan 06 2020

Formula

a(n) = floor(log_2 n#) = m such that 2^m <= p(n)# < 2^(m + 1), where p(n)# is the primorial of the n-th prime (A002110).
a(n) = A000523(A002110(n)).
a(n) ~ k*n log n, where k = 1/log(2) = A007525. - Charles R Greathouse IV, Sep 08 2025

Extensions

Edited, corrected and extended by Robert G. Wilson v, May 22 2003
Name simplified by Alonso del Arte, Oct 14 2018 (old name is now first formula).

A073137 a(n) is the least number whose binary representation has the same number of 0's and 1's as n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 7, 8, 9, 9, 11, 9, 11, 11, 15, 16, 17, 17, 19, 17, 19, 19, 23, 17, 19, 19, 23, 19, 23, 23, 31, 32, 33, 33, 35, 33, 35, 35, 39, 33, 35, 35, 39, 35, 39, 39, 47, 33, 35, 35, 39, 35, 39, 39, 47, 35, 39, 39, 47, 39, 47, 47, 63, 64, 65, 65, 67, 65, 67, 67, 71, 65
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2002

Keywords

Comments

A023416(a(n)) = A023416(n), A000120(a(n)) = A000120(n).
Fixed points are { 0 } union { A099627 }. - Alois P. Heinz, Jan 30 2025

Examples

			a(20)=17, as 20='10100' and 17 is the smallest number having two 1's and three 0's: 17='10001', 18='10010', 20='10100' and 24='11000'.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> (2^nops(l)+2^add(i, i=l))/2-1)(Bits[Split](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 26 2021
  • Mathematica
    lnb[n_]:=Module[{sidn=Sort[IntegerDigits[n,2]]},FromDigits[Join[{1}, Most[ sidn]],2]]; Join[{0},Array[lnb,80]] (* Harvey P. Dale, Aug 04 2014 *)
  • PARI
    a(n) = if(n==0,0, 1<Kevin Ryde, Jun 26 2021
  • Python
    def a(n):
        b = bin(n)[2:]; z = b.count('0'); w = len(b) - z
        return int('1'*(w > 0) + '0'*z + '1'*(w-1), 2)
    print([a(n) for n in range(73)]) # Michael S. Branicky, Jun 26 2021
    
  • Python
    def a(n): b = bin(n)[2:]; return int(b[0] + "".join(sorted(b[1:])), 2)
    print([a(n) for n in range(73)]) # Michael S. Branicky, Jun 26 2021
    

Formula

a(0)=0, a(1)=1; for n > 1, let C = 2^(floor(log_2(n))-1) = A072376(n); then a(n) = a(n-C) + C if n < 3*C; otherwise a(n) = 2*a(n - 2*C) + 1. [corrected by Jon E. Schoenfield, Jun 27 2021]
For n > 0: a(n) = (2^(A000120(n) - 1)) * (2^A023416(n) + 1) - 1. - Corrected by Michel Marcus, Nov 15 2013
Previous Showing 101-110 of 303 results. Next