A215083
Triangle T(n,k) = sum of the k first n-th powers.
Original entry on oeis.org
0, 0, 1, 0, 1, 5, 0, 1, 9, 36, 0, 1, 17, 98, 354, 0, 1, 33, 276, 1300, 4425, 0, 1, 65, 794, 4890, 20515, 67171, 0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925
Offset: 0
Triangle starts (using the convention 0^0 = 1, see the first comment):
[0] 1
[1] 0, 1
[2] 0, 1, 5
[3] 0, 1, 9, 36
[4] 0, 1, 17, 98, 354
[5] 0, 1, 33, 276, 1300, 4425
[6] 0, 1, 65, 794, 4890, 20515, 67171
A215078 is the product of this array with the binomial array.
T(3,k) is the beginning of
A000537.
T(4,k) is the beginning of
A000538.
T(5,k) is the beginning of
A000539.
-
A215083 := (n, k) -> add(i^n, i=0..k):
for n from 0 to 8 do seq(A215083(n, k), k=0..n) od; # Peter Luschny, Oct 02 2017
-
Flatten[Table[Table[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 10}], 1]
Table[ HarmonicNumber[k, -n], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
Original entry on oeis.org
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1
Cecilia Rossiter, Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (1).
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
Cf.
A101095 for an expanded table and more about MagicNKZ.
-
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)
Original Formula edited and Crossrefs table added by
Danny Rorabaugh, Apr 22 2015
A256188
In positive integers: replace k*(k+1)/2 with the first k numbers.
Original entry on oeis.org
1, 2, 1, 2, 4, 5, 1, 2, 3, 7, 8, 9, 1, 2, 3, 4, 11, 12, 13, 14, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 27, 1, 2, 3, 4, 5, 6, 7, 29, 30, 31, 32, 33, 34, 35, 1, 2, 3, 4, 5, 6, 7, 8, 37, 38, 39, 40, 41, 42, 43, 44, 1, 2, 3, 4
Offset: 1
. A000217 | 1, 3, 6, 10, 15, . . .
. A000027 | _,2,___,4,5,_____,7,8,9,_______,11,12,13,14,_________,16,...
. A002260 | 1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5,
. --------+-------------------------------------------------------------
. a(n) | 1,2,1,2,4,5,1,2,3,7,8,9,1,2,3,4,11,12,13,14,1,2,3,4,5,16,17,...
-
a256188 n = a256188_list !! (n-1)
a256188_list = f 0 [1..] a002260_tabl where
f k xs (zs:zss) = us ++ zs ++ f (k + 1) vs zss
where (us, v:vs) = splitAt k xs
-
Table[If[OddQ[Sqrt[8n+1]],Range[(Sqrt[8n+1]-1)/2],n],{n,50}]//Flatten (* Harvey P. Dale, Jun 01 2019 *)
A023002
Sum of 10th powers.
Original entry on oeis.org
0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Formula lines (second formula): website Matem@ticamente (in Italian).
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Eric Weisstein's World of Mathematics, Power Sum.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Sequences of the form Sum_{j=0..n} j^m :
A000217 (m=1),
A000330 (m=2),
A000537 (m=3),
A000538 (m=4),
A000539 (m=5),
A000540 (m=6),
A000541 (m=7),
A000542 (m=8),
A007487 (m=9), this sequence (m=10),
A123095 (m=11),
A123094 (m=12),
A181134 (m=13).
-
[&+[n^10: n in [0..m]]: m in [0..19]]; // Bruno Berselli, Aug 23 2011
-
A023002:= n-> bernoulli(11, n+1)/11; seq(A023002(n), n=0..30); # G. C. Greubel, Jul 21 2021
-
Table[Sum[k^10, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0,20]^10] (* Harvey P. Dale, Aug 23 2011 *)
-
a(n)=(6*x^11+33*x^10+55*x^9-66*x^7+66*x^5-33*x^3+5*x)/66 \\ Charles R Greathouse IV, Aug 23 2011
-
a(n)=sum(i=0,10,binomial(11,i)*bernfrac(i)*n^(11-i))/11+n^10 \\ Charles R Greathouse IV, Aug 23 2011
-
A023002_list, m = [0], [3628800, -16329600, 30240000, -29635200, 16435440, -5103000, 818520, -55980, 1022, -1, 0 , 0]
for _ in range(20):
for i in range(11):
m[i+1]+= m[i]
A023002_list.append(m[-1])
print(A023002_list) # Chai Wah Wu, Nov 05 2014
-
[bernoulli_polynomial(n,11)/11 for n in range(2, 21)]# Zerinvary Lajos, May 17 2009
A052149
Number of nonsquare rectangles on an n X n board.
Original entry on oeis.org
0, 4, 22, 70, 170, 350, 644, 1092, 1740, 2640, 3850, 5434, 7462, 10010, 13160, 17000, 21624, 27132, 33630, 41230, 50050, 60214, 71852, 85100, 100100, 117000, 135954, 157122, 180670, 206770, 235600, 267344, 302192, 340340, 381990, 427350, 476634
Offset: 1
Ronald Arms (ron.arms(AT)stanfordalumni.org), Jan 23 2000
a(10) = 10 * 9 * 11 * 32 / 12 = 2640.
a(5) = 170 and the sum from 1 to 5 is 15, giving 1*(15-1)=14, 2*(15-2)=26, 2*(15-3)=36, 4*(15-4)=44 and 5*(15-5)=50; adding 14+26+36+44+50=170. Do the same for each n and get a(n). - _J. M. Bergot_, Oct 31 2014
-
I:=[0, 4, 22, 70, 170]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Apr 28 2012
-
a:=n->sum(j^3-j^2, j=0..n): seq(a(n), n=1..37); # Zerinvary Lajos, May 08 2008
-
CoefficientList[Series[2*x*(2+x)/(1-5*x+10*x^2-10*x^3+ 5*x^4-x^5), {x,0,50}], x] (* Vincenzo Librandi, Apr 28 2012 *)
LinearRecurrence[{5,-10,10,-5,1},{0,4,22,70,170},40] (* Harvey P. Dale, Jul 30 2019 *)
-
a(n) = sum(k=1,n,(k-1)*k^2) \\ Michel Marcus, Nov 09 2012
A254469
Sixth partial sums of cubes (A000578).
Original entry on oeis.org
1, 14, 96, 450, 1650, 5082, 13728, 33462, 75075, 157300, 311168, 586092, 1058148, 1841100, 3100800, 5073684, 8090181, 12603954, 19228000, 28778750, 42329430, 61274070, 87403680, 122996250, 170922375, 234768456, 318979584, 429024376, 571584200, 754769400
Offset: 1
First differences: 1, 7, 19, 37, 61, 91, ... (A003215)
-------------------------------------------------------------------------
The cubes: 1, 8, 27, 64, 125, 216, ... (A000578)
-------------------------------------------------------------------------
First partial sums: 1, 9, 36, 100, 225, 441, ... (A000537)
Second partial sums: 1, 10, 46, 146, 371, 812, ... (A024166)
Third partial sums: 1, 11, 57, 203, 574, 1386, ... (A101094)
Fourth partial sums: 1, 12, 69, 272, 846, 2232, ... (A101097)
Fifth partial sums: 1, 13, 82, 354, 1200, 3432, ... (A101102)
Sixth partial sums: 1, 14, 96, 450, 1650, 5082, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers .
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
-
Table[n (1 + n)^2 (2 + n) (3 + n) (4 + n) (5 + n)^2 (6 + n)/60480, {n, 27}] (* or *) CoefficientList[Series[(1 + 4 x + x^2)/(- 1 + x)^10, {x, 0, 26}], x]
Nest[Accumulate,Range[30]^3,6] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,14,96,450,1650,5082,13728,33462,75075,157300},30] (* Harvey P. Dale, Sep 03 2016 *)
-
a(n)=n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480 \\ Charles R Greathouse IV, Oct 07 2015
A288876
a(n) = binomial(n+4, n)^2. Square of the fifth diagonal sequence of A007318 (Pascal). Fifth diagonal sequence of A008459.
Original entry on oeis.org
1, 25, 225, 1225, 4900, 15876, 44100, 108900, 245025, 511225, 1002001, 1863225, 3312400, 5664400, 9363600, 15023376, 23474025, 35820225, 53509225, 78411025, 112911876, 160022500, 223502500, 308002500, 419225625, 564110001, 751034025, 990046225, 1293121600, 1674446400, 2150733376
Offset: 0
A093995
n^2 appears n times, triangle read by rows.
Original entry on oeis.org
1, 4, 4, 9, 9, 9, 16, 16, 16, 16, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 81, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 1
First few rows of the triangle are:
1;
4, 4;
9, 9, 9;
16, 16, 16, 16;
25, 25, 25, 25, 25;
36, 36, 36, 36, 36, 36;
49, 49, 49, 49, 49, 49, 49;
...
-
a093995 n k = a093995_tabl !! (n-1) !! (k-1)
a093995_row n = a093995_tabl !! (n-1)
a093995_tabl = zipWith replicate [1..] $ tail a000290_list
a093995_list = concat a093995_tabl
-- Reinhard Zumkeller, Nov 11 2012, Mar 18 2011, Oct 17 2010
-
[n^2: k in [1..n], n in [1..13]]; // G. C. Greubel, Dec 27 2021
-
seq(seq(n^2, i=1..n), n=1..20); # Ridouane Oudra, Jun 18 2019
-
Flatten[Table[Table[n^2,{n}],{n,11}]] (* Harvey P. Dale, Feb 18 2011 *)
Table[PadRight[{},n,n^2],{n,12}]//Flatten (* Harvey P. Dale, Jun 28 2023 *)
-
from math import isqrt
def A093995(n): return ((m:=isqrt(k:=n<<1))+(k>m*(m+1)))**2 # Chai Wah Wu, Nov 07 2024
-
flatten([[n^2 for k in (1..n)] for n in (1..13)]) # G. C. Greubel, Dec 27 2021
A101095
Fourth difference of fifth powers (A000584).
Original entry on oeis.org
1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive Machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 14 |
A010966 | ....... | ....... | ....... | ....... |
A254872 | ....... | .......
--------------------------------------------------------------------------------------
-
I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
-
a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
-
[1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 23 2015
A107891
a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(3n^2 + 15n + 20)/2880.
Original entry on oeis.org
1, 19, 155, 805, 3136, 9996, 27468, 67320, 150645, 313027, 611611, 1134497, 2012920, 3436720, 5673648, 9093096, 14194881, 21643755, 32310355, 47319349, 68105576, 96479020, 134699500, 185562000, 252493605, 339663051, 452103939
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 167, 187 and p. 105 eq. (iii) for k=2 and m=5).
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Paolo Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
a:=n->(1/2880)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(3*n^2+15*n+20): seq(a(n),n=0..32);
-
Table[((1+n) (2+n)^2 (3+n)^2 (4+n) (20+3 n (5+n)))/2880,{n,0,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,19,155,805,3136,9996,27468,67320,150645},40] (* Harvey P. Dale, Dec 10 2021 *)
Comments