cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 193 results. Next

A316458 Expansion of 60*x*(1 + 4*x + x^2) / (1 - x)^5.

Original entry on oeis.org

60, 540, 2160, 6000, 13500, 26460, 47040, 77760, 121500, 181500, 261360, 365040, 496860, 661500, 864000, 1109760, 1404540, 1754460, 2166000, 2646000, 3201660, 3840540, 4570560, 5400000, 6337500, 7392060, 8573040, 9890160, 11353500, 12973500, 14760960
Offset: 1

Views

Author

Colin Barker, Aug 12 2018

Keywords

Comments

Seems to be the negative of the second column of A316349.

Crossrefs

Programs

  • PARI
    Vec(60*x*(1 + 4*x + x^2) / (1 - x)^5 + O(x^40))
    
  • PARI
    a(n) = 15*n^4 + 30*n^3 + 15*n^2

Formula

G.f.: 60*x*(1 + 4*x + x^2) / (1 - x)^5.
a(n) = 60 * A000537(n).
a(n) = 15*n^4 + 30*n^3 + 15*n^2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.

A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.

Original entry on oeis.org

0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0

Views

Author

Peter Kagey, Dec 06 2020

Keywords

Comments

The only regular polygons that can be drawn with vertices on the centered hexagonal grid are equilateral triangles and regular hexagons.

Examples

			There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
    * . *       . * .       * * .
   . . . .     * . . *     * . * .
  * . . . *   . . . . .   . * * . .
   . . . .     * . . *     . . . .
    * . *       . * .       . . .
      1           1           7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
    * . .       * . .       * . .       * . *       * . .       . . .
   * * . .     . . * .     . . . .     . . . .     . . . .     * . . *
  . . . . .   . * . . .   . . . * .   . . * . .   . . . . *   . . . . .
   . . . .     . . . .     * . . .     . . . .     . . . .     . . . .
    . . .       . . .       . . .       . . .       * . .       . * .
     24          14          12          12           2           2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
		

Crossrefs

Cf. A000537 (regular hexagons), A008893 (equilateral triangles).
Cf. A338323 (cubic grid).

Programs

  • Mathematica
    a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* Amiram Eldar, Jun 20 2025 *)

Formula

a(n) = A000537(n) + A008893(n).
a(n) = (1/2)*(n+1)*n*(2*n+1)^2.
a(n) = 3*A180324(n).
Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5.
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A185096(n)/4 = A322677(n)/32. (End)

A004282 a(n) = n*(n+1)^2*(n+2)^2/12.

Original entry on oeis.org

0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = C(2+n, 2)*C(2+n, 3) = A000217(n+1)*A000292(n). - Zerinvary Lajos, Jan 10 2006
a(n-1) = Sum_{1 <= x_1, x_2 <= n} x_1*(det V(x_1,x_2))^2 = Sum_{1 <= i,j <= n} i*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: x*(3+6*x+x^2)/(1-x)^6. - Colin Barker, Feb 09 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A004302(n+1) - A000537(n+1). - J. M. Bergot, Mar 28 2018
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 24*log(2) + 12. (End)

A133820 Triangle whose rows are sequences of increasing cubes: 1; 1,8; 1,8,27; ... .

Original entry on oeis.org

1, 1, 8, 1, 8, 27, 1, 8, 27, 64, 1, 8, 27, 64, 125, 1, 8, 27, 64, 125, 216, 1, 8, 27, 64, 125, 216, 343, 1, 8, 27, 64, 125, 216, 343, 512, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
Offset: 1

Views

Author

Peter Bala, Sep 25 2007

Keywords

Comments

Reading the triangle by rows produces the sequence 1,1,8,1,8,27,1,8,27,64,..., analogous to A002260.

Examples

			Triangle starts
1;
1, 8;
1, 8, 27;
1, 8, 27, 64;
1, 8, 27, 64, 125;
		

Crossrefs

Programs

  • Haskell
    a133820 n k = a133820_tabl !! (n-1) !! (k-1)
    a133820_row n = a133820_tabl !! (n-1)
    a133820_tabl = map (`take` (tail a000578_list)) [1..]
    -- Reinhard Zumkeller, Nov 11 2012
  • Mathematica
    Module[{nn=10,c},c=Range[nn]^3;Flatten[Table[Take[c,n],{n,10}]]] (* Harvey P. Dale, Mar 05 2014 *)

Formula

O.g.f.: (1+4qx+q^2x^2)/((1-x)(1-qx)^4) = 1 + x(1 + 8q) + x^2(1 + 8q + 27q^2) + ... .

Extensions

Offset changed by Reinhard Zumkeller, Nov 11 2012

A140144 a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even.

Original entry on oeis.org

1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Comments

Equals triangle A177990 * [1,2,3,...]. - Gary W. Adamson, May 16 2010

Crossrefs

Cf. A177990. - Gary W. Adamson, May 16 2010
Cf. A002378 (even bisection), A028387 (odd bisection).

Programs

  • Mathematica
    a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a

Formula

From R. J. Mathar, Feb 22 2009: (Start)
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(-1-x-x^2+x^3)/ ((1+x)^2*(x-1)^3). (End)
a(n) = Sum_{k=1..n} k^(k mod 2). - Wesley Ivan Hurt, Nov 20 2021

A164307 Primes in A081175.

Original entry on oeis.org

3, 5, 17, 257, 65537
Offset: 1

Views

Author

Keywords

Comments

The 6th term is too large to include in the data section (see Example section or the b-file).
Primes of the form sum_{j=1..u} j^x for some x>0, u>1. (Since the case of x=1 leads to the triangular numbers with no additional primes, this is equivalent to the definition.)
Primes in A000330 (x=2), or in A000537 (x=3), or in A000538 (x=4), or in A000539 (x=5) etc. See A164312 for the corresponding x values.

Examples

			a(1) = 1^1 + 2^1 = 3.
a(2) = 1^2 + 2^2 = 5.
a(3) = 1^4 + 2^4 = 17.
a(4) = 1^8 + 2^8 = 257.
a(5) = 1^16 + 2^16 = 65537.
a(6) = 1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,s];Print[Date[],s]],{n, 4!}],{x,7!}];lst

Extensions

Edited by R. J. Mathar, Aug 22 2009
Corrected by N. J. A. Sloane, Nov 23 2015 at the suggestion of Jaroslav Krizek.

A253169 Smallest m such that A256188(m) = n.

Original entry on oeis.org

1, 2, 9, 5, 6, 36, 10, 11, 12, 100, 17, 18, 19, 20, 225, 26, 27, 28, 29, 30, 441, 37, 38, 39, 40, 41, 42, 784, 50, 51, 52, 53, 54, 55, 56, 1296, 65, 66, 67, 68, 69, 70, 71, 72, 2025, 82, 83, 84, 85, 86, 87, 88, 89, 90, 3025, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2015

Keywords

Comments

A256188(a(n)) = n and A256188(m) != n for m < a(n).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a253169 = (+ 1) . fromJust . (`elemIndex` a256188_list)

Formula

a(n) = if n triangular then n^2 else A004202(n + 1 - A002024(n)).

A257448 a(n) = 13*(2^n - 1) - 3*n^2 - 9*n.

Original entry on oeis.org

1, 9, 37, 111, 283, 657, 1441, 3051, 6319, 12909, 26149, 52695, 105859, 212265, 425161, 851043, 1702903, 3406725, 6814477, 13630095, 27261451, 54524289, 109050097, 218101851, 436205503, 872412957, 1744828021, 3489658311, 6979319059, 13958640729
Offset: 1

Views

Author

Luciano Ancora, Apr 23 2015

Keywords

Comments

These numbers belong to a family of sequences obtained as follows:
. A000225: 1*(2^n-1);
. A050488: 3*(2^n-1) - 2*n;
. a(n): 13*(2^n-1) - 3*n^2 - 9*n;
. A257449: 75*(2^n-1) - 4*n^3 - 18*n^2 - 52*n;
. A257450: 541*(2^n-1) - 5*n^4 - 30*n^3 - 130*n^2 - 375*n,
where the sequence 1, 3, 13, 75, 541, ... is A000670 (after the first term), and A208744 gives the triangle of coefficients:
2;
3, 9;
4, 18, 52;
5, 30, 130, 375;
6, 45, 260, 1125, 3246;
7, 63, 455, 2625, 11361, 32781, etc.
Also, the antidiagonal sums in the array are given by the formula (6*n^2 + 6*k*n + (k-1)*k)*(k+n)!/((k+3)!*(n-1)!) for k = 0, 1, 2, 3, 4, ... (see Example field).

Examples

			By the second comment, the array begins (antidiagonals in A046902):
k=0: 1,  8, 27,  64,  125,  216, ...  A000578
k=1: 1,  9, 36, 100,  225,  441, ...  A000537
k=2: 1, 10, 46, 146,  371,  812, ...  A024166
k=3: 1, 11, 57, 203,  574, 1386, ...  A101094
k=4: 1, 12, 69, 272,  846, 2232, ...  A101097
k=5: 1, 13, 82, 354, 1200, 3432, ...  A101102
k=6: 1, 14, 96, 450, 1650, 5082, ...  A254469
...
See also A254469 (Example field).
		

Crossrefs

Programs

  • Magma
    [13*(2^n-1)-3*n^2-9*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
  • Mathematica
    Table[13 (2^n - 1) - 3 n^2 - 9n, {n, 30}]
    CoefficientList[Series[x (1 + 4 x + x^2)/((1 - x)^3*(1 - 2 x)), {x, 0, 30}], x] (* Michael De Vlieger, Nov 14 2016 *)

Formula

G.f.: x*(1+4*x+x^2)/((1-x)^3*(1-2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4. - Ray Chandler, Jul 25 2015

Extensions

Edited by Bruno Berselli, Apr 28 2015

A264854 a(n) = n*(n + 1)*(11*n^2 + 11*n - 10)/24.

Original entry on oeis.org

0, 1, 14, 61, 175, 400, 791, 1414, 2346, 3675, 5500, 7931, 11089, 15106, 20125, 26300, 33796, 42789, 53466, 66025, 80675, 97636, 117139, 139426, 164750, 193375, 225576, 261639, 301861, 346550, 396025, 450616, 510664, 576521, 648550, 727125, 812631, 905464, 1006031
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Partial sums of centered 11-gonal (or hendecagonal) pyramidal numbers.

Crossrefs

Cf. A004467.
Cf. similar sequences provided by the partial sums of centered k-gonal pyramidal numbers: A006522 (k=1), A006007 (k=2), A002817 (k=3), A006325 (k=4), A006322 (k=5), A000537 (k=6), A006323 (k=7), A006324 (k=8), A236770 (k=9), A264853 (k=10), this sequence (k=11), A062392 (k=12), A264888 (k=13).

Programs

  • Magma
    [n*(n+1)*(11*n^2+11*n-10)/24: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
    
  • Mathematica
    Table[n (n + 1) (11 n^2 + 11 n - 10)/24, {n, 0, 50}]
  • PARI
    a(n)=n*(n+1)*(11*n^2+11*n-10)/24 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 + 9*x + x^2)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A004467(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015

A265377 Sums of two or more consecutive positive cubes.

Original entry on oeis.org

9, 35, 36, 91, 99, 100, 189, 216, 224, 225, 341, 405, 432, 440, 441, 559, 684, 748, 775, 783, 784, 855, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1584, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2241, 2331, 2584, 2800, 2925, 2989, 3016, 3024, 3025, 3059, 3060
Offset: 1

Views

Author

Robert Israel, Dec 07 2015

Keywords

Comments

All numbers of the form A000537(b) - A000537(a) for 0 <= a <= b-2.
A217843 minus (A000578 minus A131643).
n is in the sequence iff n = s*t where (s+t)/2 = A000217(u) and (s-t)/2 = A000217(v) with u-v >= 2.
If a(k(n)) = A000537(n+1), k(n) >= A000217(n) for n > 0. - Altug Alkan, Dec 07 2015
See A062682 for sums of two or more consecutive positive cubes in more than one way. - Reinhard Zumkeller, Dec 16 2015

Examples

			a(1) = 1^3 + 2^3 = 9.
a(2) = 2^3 + 3^3 = 35.
a(3) = 1^3 + 2^3 + 3^3 = 36.
		

Crossrefs

Subset of A217843.
Cf. A062682 (subsequence).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a265377 n = a265377_list !! (n-1)
    a265377_list = f (singleton (1 + 2^3, (1, 2))) (-1) where
       f s z = if y /= z then y : f s'' y else f s'' y
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 17 2015
  • Maple
    amin:= proc(b,N) local r;
      r:= b^2*(b+1)^2 - 4*N; if r > 0 then iroot(r,4) else 1 fi
    end proc:
    A265377:= proc(N) # to get all terms <= N
      local  a,b;
      sort(convert(select(`<=`,{seq(seq(b^2*(b+1)^2/4 - a^2*(a-1)^2/4,
           a = amin(b,N) .. b-1), b=2..1+iroot(floor(N/2),3))},N),list))
    end proc:
    A265377(10000);
  • Mathematica
    With[{nn=12},Select[Sort[Flatten[Table[Total/@Partition[Range[nn]^3,n,1],{n,2,nn}]]],#<=((nn(nn+1))/2)^3&]] (* Harvey P. Dale, Dec 25 2015 *)
Previous Showing 91-100 of 193 results. Next