cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A218115 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 17, 1, 1, 98, 98, 1, 1, 354, 2251, 354, 1, 1, 979, 23803, 23803, 979, 1, 1, 2275, 158367, 617036, 158367, 2275, 1, 1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1, 1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1, 1, 15333
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

Compare g.f. to that of the following triangle variants:
* Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n );
* Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n );
* A181143: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n );
* A181144: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n );
* A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ).

Examples

			G.f.: A(x,y) = 1 + (1+y)*x + (1+17*y+y^2)*x^2 + (1+98*y+98*y^2+y^3)*x^3 + (1+354*y+2251*y^2+354*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^5*y + y^2)*x^2/2
+ (1 + 3^5*y + 3^5*y^2 + y^3)*x^3/3
+ (1 + 4^5*y + 6^5*y^2 + 4^5*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 17, 1;
1, 98, 98, 1;
1, 354, 2251, 354, 1;
1, 979, 23803, 23803, 979, 1;
1, 2275, 158367, 617036, 158367, 2275, 1;
1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1;
1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1;
1, 15333, 10057620, 575963523, 4066874561, 4066874561, 575963523, 10057620, 15333, 1; ...
Note that column 1 forms the sum of fourth powers (A000538).
		

Crossrefs

Cf. A000538 (column 1), A218117 (row sums).
Cf. variants: A001263 (Narayana), A181143, A181144, A218116.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^5*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A359320 Maximal coefficient of (1 + x) * (1 + x^16) * (1 + x^81) * ... * (1 + x^(n^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 13, 17, 24, 34, 53, 84, 130, 177, 290, 500, 797, 1300, 2066, 3591, 6090, 10298, 17330, 29888, 50811, 88358, 153369, 280208, 481289, 845090, 1474535, 2703811, 4808816, 8329214, 14806743, 27529781, 48859783, 87674040, 156471632
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; max(coeffs(expand(mul(1+x^(i^4), i=1..n)))) end proc:
    map(f, [$1..50]); # Robert Israel, Dec 26 2022
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1+x^(k^4)))); \\ Michel Marcus, Dec 26 2022
    
  • Python
    from collections import Counter
    def A359320(n):
        c = {0:1,1:1}
        for i in range(2,n+1):
            j, d = i**4, Counter(c)
            for k in c:
                d[k+j] += c[k]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

Extensions

a(38)-a(50) from Seiichi Manyama, Dec 26 2022

A004538 a(n) = 3*n^2 + 3*n - 1.

Original entry on oeis.org

-1, 5, 17, 35, 59, 89, 125, 167, 215, 269, 329, 395, 467, 545, 629, 719, 815, 917, 1025, 1139, 1259, 1385, 1517, 1655, 1799, 1949, 2105, 2267, 2435, 2609, 2789, 2975, 3167, 3365, 3569, 3779, 3995, 4217, 4445
Offset: 0

Views

Author

N. J. A. Sloane, Eric T. Lane (ERICLANE(AT)UTCVM.UTC.EDU)

Keywords

Comments

Numbers k such that (4*k + 7)/3 is a square. - Bruno Berselli, Sep 11 2018

Crossrefs

First differences of A033445.

Programs

  • Magma
    [3*n^2 + 3*n -1: n in [0..50]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[5*Sum[k^4,{k,1,n}]/Sum[k^2,{k,1,n}], {n,1,20}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[3n^2+3n-1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{-1,5,17},40] (* Harvey P. Dale, Jan 18 2019 *)
  • PARI
    a(n)=3*n^2+3*n-1 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

From Alexander Adamchuk, Apr 12 2006: (Start)
a(n) = 5 * Sum_{k=1..n} k^4 / Sum_{k=1..n} k^2, n > 0.
a(n) = 5 * A000538(n) / A000330(n), n > 0. (End)
a(n) = a(n-1) + 6*n with a(0)=-1. - Vincenzo Librandi, Nov 18 2010
From G. C. Greubel, Sep 10 2018: (Start)
G.f.: (-1 + 8*x - x^2)/(1 - x)^3.
E.g.f.: (-1 + 6*x + 3*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = ( psi(1/2+sqrt(21)/6) - psi(1/2-sqrt(21)/6)) /sqrt(21) = -0.6286929... R. J. Mathar, Apr 24 2024

A060452 Let v = (1,4,9,...,n^2), x = (0,1,2,4,6,...) [first n terms of A002620]; a(n) = v.v * x.x - (v.x)^2.

Original entry on oeis.org

0, 1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14858038, 16924440, 20124440, 22778042, 26862143, 30229430, 35383062, 39609933, 46046276, 51299936, 59262560, 65733500, 75499125
Offset: 1

Views

Author

N. J. A. Sloane and Vinay Vaishampayan, Apr 09 2001

Keywords

Crossrefs

Cf. A002620, A000538, A059859. Agrees with A060453 for first 37 terms.

Programs

  • Maple
    fv := n->1/30*n*(1+n)*(2*n+1)*(3*n^2+3*n-1); # this is A000538
    f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5);
    f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4);
    f7 := n->if n mod 2 = 0 then f2(n) else f1(n) end if; # this is A059859
    f3 := n->1/20*n^5+1/8*n^4+1/24*n^3-11/120*n-1/8*n^2;
    f4 := n->1/20*n^5+1/8*n^4+1/24*n^3+1/30*n;
    f5:-n-> if `mod`(n,2) = 0 then f4(n) else f3(n) end if; # this is A060453
    A060452 := n->f7(n)*fv(n)-f5(n)^2;
  • Mathematica
    Table[Module[{nn=n,v,x},v=Range[nn]^2;x=Floor[v/4];v.v x.x-(v.x)^2],{n,50}] (* or *) LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{0,1,6,38,107,350,728,1752,3090,6215,9878,17654,26117},50] (* Harvey P. Dale, Aug 10 2021 *)

Formula

G.f. -x^2*(1+5*x+26*x^2+39*x^3+66*x^4+39*x^5+26*x^6+5*x^7+x^8) / ( (1+x)^6*(x-1)^7 ). - R. J. Mathar, Apr 04 2012

A133821 Triangle whose rows are sequences of increasing fourth powers: 1; 1,16; 1,16,81; ... .

Original entry on oeis.org

1, 1, 16, 1, 16, 81, 1, 16, 81, 256, 1, 16, 81, 256, 625, 1, 16, 81, 256, 625, 1296, 1, 16, 81, 256, 625, 1296, 2401, 1, 16, 81, 256, 625, 1296, 2401, 4096, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000
Offset: 1

Views

Author

Peter Bala, Sep 25 2007

Keywords

Comments

Reading the triangle by rows produces the sequence 1,1,16,1,16,81,1,16,81,256,..., analogous to A002260.

Examples

			Triangle starts
1;
1, 16;
1, 16; 81;
1, 16, 81, 256;
1, 16, 81, 256, 625;
		

Crossrefs

Cf. A000538 (row sums), A002260, A133819, A133820, A133824.

Programs

  • Haskell
    a133821 n k = a133821_tabl !! (n-1) !! (k-1)
    a133821_row n = a133821_tabl !! (n-1)
    a133821_tabl = map (`take` (tail a000583_list)) [1..]
    -- Reinhard Zumkeller, Nov 11 2012
  • Mathematica
    Module[{nn=10,fp},fp=Range[(nn(nn+1))/2]^4;Table[TakeList[fp,{n}],{n,nn}]]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Mar 29 2020 *)

Formula

O.g.f.: (1+11qx+11q^2x^2+q^3x^3)/((1-x)(1-qx)^5) = 1 + x(1 + 16q) + x^2(1 + 16q + 81q^2) + ... . Cf. 4th row of A008292.

Extensions

Offset changed by Reinhard Zumkeller, Nov 11 2012

A140144 a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even.

Original entry on oeis.org

1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869
Offset: 1

Views

Author

Artur Jasinski, May 12 2008

Keywords

Comments

Equals triangle A177990 * [1,2,3,...]. - Gary W. Adamson, May 16 2010

Crossrefs

Cf. A177990. - Gary W. Adamson, May 16 2010
Cf. A002378 (even bisection), A028387 (odd bisection).

Programs

  • Mathematica
    a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a

Formula

From R. J. Mathar, Feb 22 2009: (Start)
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(-1-x-x^2+x^3)/ ((1+x)^2*(x-1)^3). (End)
a(n) = Sum_{k=1..n} k^(k mod 2). - Wesley Ivan Hurt, Nov 20 2021

A145217 a(n) is the self-convolution series of the sum of 4th powers of the first n natural numbers.

Original entry on oeis.org

1, 32, 418, 3104, 16003, 64064, 213060, 614976, 1587333, 3742816, 8190182, 16832608, 32795399, 61021312, 109078664, 188234880, 314856201, 512202912, 812698666, 1260762272, 1916300683, 2858972864, 4193345740, 6055075520
Offset: 1

Views

Author

Abdullahi Umar, Oct 05 2008

Keywords

Examples

			a(3) = 418 because 1(3^4)+(2^4)(2^4)+(3^4)1= 418
		

References

  • A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
  • A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.

Crossrefs

a(n) = Conv(A000538, A000538).

Programs

  • Magma
    [Binomial(n+2,3)*(n*(n+2)*(n^4+4*n^3+8*n^2+8*n+6)+24)/105: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
  • Maple
    f:=n->(n^9+20*n^3-21*n)/630;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^2 (1 + 10 x + x^2)^2/(1 - x)^10, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,32,418,3104,16003,64064,213060,614976,1587333,3742816},30] (* Harvey P. Dale, May 19 2021 *)

Formula

a(n) = C(n+2,3)*(n*(n+2)*(n^4+4*n^3+8*n^2+8*n+6)+24)/105.
G.f.: x*(1+x)^2*(1+10*x+x^2)^2/(1-x)^10. [Colin Barker, May 25 2012]

A164307 Primes in A081175.

Original entry on oeis.org

3, 5, 17, 257, 65537
Offset: 1

Views

Author

Keywords

Comments

The 6th term is too large to include in the data section (see Example section or the b-file).
Primes of the form sum_{j=1..u} j^x for some x>0, u>1. (Since the case of x=1 leads to the triangular numbers with no additional primes, this is equivalent to the definition.)
Primes in A000330 (x=2), or in A000537 (x=3), or in A000538 (x=4), or in A000539 (x=5) etc. See A164312 for the corresponding x values.

Examples

			a(1) = 1^1 + 2^1 = 3.
a(2) = 1^2 + 2^2 = 5.
a(3) = 1^4 + 2^4 = 17.
a(4) = 1^8 + 2^8 = 257.
a(5) = 1^16 + 2^16 = 65537.
a(6) = 1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,s];Print[Date[],s]],{n, 4!}],{x,7!}];lst

Extensions

Edited by R. J. Mathar, Aug 22 2009
Corrected by N. J. A. Sloane, Nov 23 2015 at the suggestion of Jaroslav Krizek.

A302352 a(n) = Sum_{k=0..n} k^4*binomial(2*n-k,n).

Original entry on oeis.org

0, 1, 19, 155, 936, 4884, 23465, 107107, 472600, 2036838, 8631206, 36119798, 149724940, 616104450, 2520629685, 10265200035, 41650094640, 168481778790, 679847488650, 2737640364810, 11005139655744, 44176226269728, 177114113623194, 709364594864910, 2838599638596176, 11350436081373340
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Comments

Main diagonal of iterated partial sums array of fourth powers (starting with the first partial sums). For nonnegative integers see A002054, for squares see A265612, for cubes see A293550.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^4 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^(n + 6), {x, 0, n}], {n, 0, 25}]
    Table[2^(2 n + 1) n (75 n^3 + 52 n^2 - 3 n - 4) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 6]), {n, 0, 25}]
    CoefficientList[Series[(24 - 180 x + 410 x^2 - 285 x^3 + 31 x^4 + Sqrt[1 - 4 x] (-24 + 132 x - 194 x^2 + 65 x^3 - x^4))/(2 Sqrt[1 - 4 x] x^5), {x, 0, 25}], x]
    CoefficientList[Series[E^(2 x) (-576 + 360 x - 244 x^2 + 75 x^3) BesselI[0, 2 x]/x^3 + E^(2 x) (576 - 360 x + 532 x^2 - 255 x^3 + 75 x^4) BesselI[1, 2 x]/x^4, {x, 0, 25}], x]* Range[0, 25]!
  • PARI
    a(n) = sum(k=0, n, k^4*binomial(2*n-k,n)); \\ Michel Marcus, Apr 07 2018

Formula

a(n) = [x^n] x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^(n+6).
a(n) = 2^(2*n+1)*n*(75*n^3 + 52*n^2 - 3*n - 4)*Gamma(n+3/2)/(sqrt(Pi)*Gamma(n+6)).
a(n) ~ 75*2^(2*n+1)/sqrt(Pi*n).

A081175 Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Comments

Union of sums of k-th powers, for k >= 1.

Examples

			30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
		

Crossrefs

For primes in this sequence see A164307.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
    sort(convert(A,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]

Extensions

Corrected and extended by Robert G. Wilson v, May 08 2003
Previous Showing 31-40 of 81 results. Next