A218115
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 98, 98, 1, 1, 354, 2251, 354, 1, 1, 979, 23803, 23803, 979, 1, 1, 2275, 158367, 617036, 158367, 2275, 1, 1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1, 1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1, 1, 15333
Offset: 0
G.f.: A(x,y) = 1 + (1+y)*x + (1+17*y+y^2)*x^2 + (1+98*y+98*y^2+y^3)*x^3 + (1+354*y+2251*y^2+354*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^5*y + y^2)*x^2/2
+ (1 + 3^5*y + 3^5*y^2 + y^3)*x^3/3
+ (1 + 4^5*y + 6^5*y^2 + 4^5*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 17, 1;
1, 98, 98, 1;
1, 354, 2251, 354, 1;
1, 979, 23803, 23803, 979, 1;
1, 2275, 158367, 617036, 158367, 2275, 1;
1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1;
1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1;
1, 15333, 10057620, 575963523, 4066874561, 4066874561, 575963523, 10057620, 15333, 1; ...
Note that column 1 forms the sum of fourth powers (A000538).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^5*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A359320
Maximal coefficient of (1 + x) * (1 + x^16) * (1 + x^81) * ... * (1 + x^(n^4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 13, 17, 24, 34, 53, 84, 130, 177, 290, 500, 797, 1300, 2066, 3591, 6090, 10298, 17330, 29888, 50811, 88358, 153369, 280208, 481289, 845090, 1474535, 2703811, 4808816, 8329214, 14806743, 27529781, 48859783, 87674040, 156471632
Offset: 0
-
f:= proc(n) local i; max(coeffs(expand(mul(1+x^(i^4), i=1..n)))) end proc:
map(f, [$1..50]); # Robert Israel, Dec 26 2022
-
a(n) = vecmax(Vec(prod(k=1, n, 1+x^(k^4)))); \\ Michel Marcus, Dec 26 2022
-
from collections import Counter
def A359320(n):
c = {0:1,1:1}
for i in range(2,n+1):
j, d = i**4, Counter(c)
for k in c:
d[k+j] += c[k]
c = d
return max(c.values()) # Chai Wah Wu, Jan 31 2024
A004538
a(n) = 3*n^2 + 3*n - 1.
Original entry on oeis.org
-1, 5, 17, 35, 59, 89, 125, 167, 215, 269, 329, 395, 467, 545, 629, 719, 815, 917, 1025, 1139, 1259, 1385, 1517, 1655, 1799, 1949, 2105, 2267, 2435, 2609, 2789, 2975, 3167, 3365, 3569, 3779, 3995, 4217, 4445
Offset: 0
-
[3*n^2 + 3*n -1: n in [0..50]]; // G. C. Greubel, Sep 10 2018
-
Table[5*Sum[k^4,{k,1,n}]/Sum[k^2,{k,1,n}], {n,1,20}] (* Alexander Adamchuk, Apr 12 2006 *)
Table[3n^2+3n-1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{-1,5,17},40] (* Harvey P. Dale, Jan 18 2019 *)
-
a(n)=3*n^2+3*n-1 \\ Charles R Greathouse IV, Jun 17 2017
A060452
Let v = (1,4,9,...,n^2), x = (0,1,2,4,6,...) [first n terms of A002620]; a(n) = v.v * x.x - (v.x)^2.
Original entry on oeis.org
0, 1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14858038, 16924440, 20124440, 22778042, 26862143, 30229430, 35383062, 39609933, 46046276, 51299936, 59262560, 65733500, 75499125
Offset: 1
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
-
fv := n->1/30*n*(1+n)*(2*n+1)*(3*n^2+3*n-1); # this is A000538
f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5);
f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4);
f7 := n->if n mod 2 = 0 then f2(n) else f1(n) end if; # this is A059859
f3 := n->1/20*n^5+1/8*n^4+1/24*n^3-11/120*n-1/8*n^2;
f4 := n->1/20*n^5+1/8*n^4+1/24*n^3+1/30*n;
f5:-n-> if `mod`(n,2) = 0 then f4(n) else f3(n) end if; # this is A060453
A060452 := n->f7(n)*fv(n)-f5(n)^2;
-
Table[Module[{nn=n,v,x},v=Range[nn]^2;x=Floor[v/4];v.v x.x-(v.x)^2],{n,50}] (* or *) LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{0,1,6,38,107,350,728,1752,3090,6215,9878,17654,26117},50] (* Harvey P. Dale, Aug 10 2021 *)
A133821
Triangle whose rows are sequences of increasing fourth powers: 1; 1,16; 1,16,81; ... .
Original entry on oeis.org
1, 1, 16, 1, 16, 81, 1, 16, 81, 256, 1, 16, 81, 256, 625, 1, 16, 81, 256, 625, 1296, 1, 16, 81, 256, 625, 1296, 2401, 1, 16, 81, 256, 625, 1296, 2401, 4096, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000
Offset: 1
Triangle starts
1;
1, 16;
1, 16; 81;
1, 16, 81, 256;
1, 16, 81, 256, 625;
-
a133821 n k = a133821_tabl !! (n-1) !! (k-1)
a133821_row n = a133821_tabl !! (n-1)
a133821_tabl = map (`take` (tail a000583_list)) [1..]
-- Reinhard Zumkeller, Nov 11 2012
-
Module[{nn=10,fp},fp=Range[(nn(nn+1))/2]^4;Table[TakeList[fp,{n}],{n,nn}]]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Mar 29 2020 *)
A140144
a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even.
Original entry on oeis.org
1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869
Offset: 1
-
a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a
A145217
a(n) is the self-convolution series of the sum of 4th powers of the first n natural numbers.
Original entry on oeis.org
1, 32, 418, 3104, 16003, 64064, 213060, 614976, 1587333, 3742816, 8190182, 16832608, 32795399, 61021312, 109078664, 188234880, 314856201, 512202912, 812698666, 1260762272, 1916300683, 2858972864, 4193345740, 6055075520
Offset: 1
a(3) = 418 because 1(3^4)+(2^4)(2^4)+(3^4)1= 418
- A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
- A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[Binomial(n+2,3)*(n*(n+2)*(n^4+4*n^3+8*n^2+8*n+6)+24)/105: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
-
f:=n->(n^9+20*n^3-21*n)/630;
[seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
-
CoefficientList[Series[(1 + x)^2 (1 + 10 x + x^2)^2/(1 - x)^10, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,32,418,3104,16003,64064,213060,614976,1587333,3742816},30] (* Harvey P. Dale, May 19 2021 *)
Original entry on oeis.org
3, 5, 17, 257, 65537
Offset: 1
a(1) = 1^1 + 2^1 = 3.
a(2) = 1^2 + 2^2 = 5.
a(3) = 1^4 + 2^4 = 17.
a(4) = 1^8 + 2^8 = 257.
a(5) = 1^16 + 2^16 = 65537.
a(6) = 1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379.
-
lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,s];Print[Date[],s]],{n, 4!}],{x,7!}];lst
A302352
a(n) = Sum_{k=0..n} k^4*binomial(2*n-k,n).
Original entry on oeis.org
0, 1, 19, 155, 936, 4884, 23465, 107107, 472600, 2036838, 8631206, 36119798, 149724940, 616104450, 2520629685, 10265200035, 41650094640, 168481778790, 679847488650, 2737640364810, 11005139655744, 44176226269728, 177114113623194, 709364594864910, 2838599638596176, 11350436081373340
Offset: 0
-
Table[Sum[k^4 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^(n + 6), {x, 0, n}], {n, 0, 25}]
Table[2^(2 n + 1) n (75 n^3 + 52 n^2 - 3 n - 4) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 6]), {n, 0, 25}]
CoefficientList[Series[(24 - 180 x + 410 x^2 - 285 x^3 + 31 x^4 + Sqrt[1 - 4 x] (-24 + 132 x - 194 x^2 + 65 x^3 - x^4))/(2 Sqrt[1 - 4 x] x^5), {x, 0, 25}], x]
CoefficientList[Series[E^(2 x) (-576 + 360 x - 244 x^2 + 75 x^3) BesselI[0, 2 x]/x^3 + E^(2 x) (576 - 360 x + 532 x^2 - 255 x^3 + 75 x^4) BesselI[1, 2 x]/x^4, {x, 0, 25}], x]* Range[0, 25]!
-
a(n) = sum(k=0, n, k^4*binomial(2*n-k,n)); \\ Michel Marcus, Apr 07 2018
A081175
Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.
Original entry on oeis.org
1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1
30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
For primes in this sequence see
A164307.
-
N:= 1000: # to get all terms <= N
A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
sort(convert(A,list)); # Robert Israel, Jan 26 2015
-
Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]
Comments