cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A010968 a(n) = binomial(n,15).

Original entry on oeis.org

1, 16, 136, 816, 3876, 15504, 54264, 170544, 490314, 1307504, 3268760, 7726160, 17383860, 37442160, 77558760, 155117520, 300540195, 565722720, 1037158320, 1855967520, 3247943160, 5567902560, 9364199760, 15471286560, 25140840660, 40225345056, 63432274896
Offset: 15

Views

Author

Keywords

Comments

There are no primes in this sequence. - Artur Jasinski, Dec 02 2007

Crossrefs

Programs

Formula

a(n) = -A110555(n+1,15). - Reinhard Zumkeller, Jul 27 2005
a(n+14) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)/15!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^15/(1-x)^16. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-15) * a(n-1), n > 15. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=15} 1/a(n) = 15/14.
Sum_{n>=15} (-1)^(n+1)/a(n) = A001787(15)*log(2) - A242091(15)/14! = 245760*log(2) - 1023103525/6006 = 0.9438350048... (End)

Extensions

Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009

A039948 A triangle related to A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
    1;
    1,   1;
    4,   2,   1;
   18,  12,   3,  1;
  120,  72,  24,  4, 1;
  960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
		

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
  • SageMath
    def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
    flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022

Formula

T(n, m) = n!*Fibonacci(n-m+1)/m!, n >= m >= 0.
T(n, 0) = A005442(n).
T(n, 1) = A005443(n).
E.g.f. for column m: x^m/(m!*(1-x-x^2)), m >= 0.
From G. C. Greubel, Nov 20 2022: (Start)
T(n, n-1) = A000027(n).
T(n, n-2) = 4*A000217(n-1), n >= 2.
T(n, n-3) = 18*A000292(n-2), n >= 3.
T(n, n-4) = 5! * A000332(n), n >= 4.
T(n, n-5) = 8 * 5! * A000389(n), n >= 5.
T(n, n-6) = 13 * 6! * A000579(n), n >= 6.
T(n, n-7) = 21 * 7! * A000580(n), n >= 7.
T(n, n-8) = 34 * 8! * A000581(n), n >= 8.
T(n, n-9) = 55 * 9! * A000582(n), n >= 9.
T(n, n-10) = 89 * 10! * A001287(n), n >= 10.
T(n, n-11) = 12 * 12! * A001288(n), n >= 11.
T(n, n-12) = 233 * 12! * A010965(n), n >= 12.
T(n, n-13) = 89 * 13! * A010966(n), n >= 13.
Sum_{k=0..n} T(n, k) = A110313(n). (End)

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A306477 Number of ways to write n as C(w+2,2) + C(x+3,4) + C(y+5,6) + C(z+7,8) with w,x,y,z nonnegative integers, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).

Original entry on oeis.org

1, 3, 4, 4, 3, 3, 5, 6, 5, 5, 8, 8, 6, 4, 6, 10, 10, 8, 6, 6, 6, 10, 9, 6, 6, 7, 7, 6, 8, 10, 10, 7, 4, 7, 7, 9, 13, 12, 9, 6, 5, 6, 11, 12, 12, 13, 10, 9, 8, 9, 11, 15, 12, 8, 8, 10, 14, 11, 7, 8, 12, 9, 8, 9, 10, 11, 13, 8, 5, 9, 10, 13, 14, 12, 8, 7, 6, 12, 14, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 18 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer n can be written as C(w,2) + C(x,4) + C(y,6) + C(z,8), where w,x,y,z are integers greater than one.
I'd like to call this conjecture "the 2-4-6-8 conjecture". I have verified it for all n = 1..3*10^7.
On Feb. 20, 2019, Yaakov Baruch reported on Mathoverflow that he had verified the 2-4-6-8 conjecture for n up to 5*10^8. - Zhi-Wei Sun, Feb 20 2019
On Feb. 24, 2019, Max A. Alekseyev reported on Mathoverflow that he had verified the 2-4-6-8 conjecture for n up to 2*10^11.
I'd like to offer 2468 US dollars as the prize for the first correct proof of my 2-4-6-8 conjecture, or 2468 RMB as the prize for the first explicit counterexample. - Zhi-Wei Sun, Feb 24 2019
Yaakov Baruch reported on March 12, 2019 that he had checked the 2-4-6-8 conjecture for all n = 1..2*10^12 with no counterexample found. - Zhi-Wei Sun, Mar 12 2019

Examples

			a(1) = 1 with 1 = C(2,2) + C(3,4) + C(5,6) + C(7,8).
a(4655) = 2 with 4655 = C(85,2) + C(14,4) + C(9,6) + C(7,8) = C(94,2) + C(7,4) + C(9,6) + C(11,8).
a(9590) = 2 with 9590 = C(35,2) + C(21,4) + C(7,6) + C(14,8) = C(136,2) + C(7,4) + C(10,6) + C(11,8).
a(24935) = 2 with 24935 = C(49,2) + C(29,4) + C(7,6) + C(8,8) = C(140,2) + C(26,4) + C(10,6) + C(10,8).
a(33845) = 2 with 33845 = C(104,2) + C(8,4) + C(19,6) + C(13,8) = C(148,2) + C(26,4) + C(16,6) + C(9,8).
a(192080) = 2 with 192080 = C(7,2) + C(26,4) + C(25,6) + C(9,8) = C(414,2) + C(39,4) + C(8,6) + C(17,8).
a(23343989) = 1 with 23343989 = C(365,2) + C(76,4) + C(40,6) + C(34,8).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m]; TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[f[8,z]>=n,Goto[cc]];Do[If[f[6,y]>=n-f[8,z],Goto[bb]];Do[If[f[4,x]>=n-f[8,z]-f[6,y],Goto[aa]];If[TQ[n-f[8,z]-f[6,y]-f[4,x]],r=r+1],{x,0,n-1-f[8,z]-f[6,y]}];Label[aa],{y,0,n-1-f[8,z]}];Label[bb],{z,0,n-1}];Label[cc];tab=Append[tab,r],{n,1,80}];Print[tab]

A053137 Binomial coefficients C(2*n+8,8).

Original entry on oeis.org

1, 45, 495, 3003, 12870, 43758, 125970, 319770, 735471, 1562275, 3108105, 5852925, 10518300, 18156204, 30260340, 48903492, 76904685, 118030185, 177232627, 260932815, 377348994, 536878650, 752538150, 1040465790, 1420494075, 1916797311, 2558620845, 3381098545
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of ninth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^8). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Magma
    [Binomial(2*n+8,8): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n+8, 8], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,45,495,3003,12870,43758,125970,319770,735471},30] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    a(n)=binomial(2*n+8,8) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = binomial(2*n+8, 8) = A000581(2*n+8).
G.f.: (1+36*x+126*x^2+84*x^3+9*x^4) / (1-x)^9 = (1+3*x) * (3*x^3+27*x^2+33*x+1) / (1-x)^9.
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 512*log(2) - 5308/15.
Sum_{n>=0} (-1)^n/a(n) = 16*Pi + 32*log(2) - 1072/15. (End)

A097299 Ninth column (m=8) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 49, 225, 765, 2145, 5247, 11583, 23595, 45045, 81510, 140998, 234702, 377910, 591090, 901170, 1343034, 1961256, 2812095, 3965775, 5509075, 7548255, 10212345, 13656825, 18067725, 23666175, 30713436, 39516444, 50433900, 63882940
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+8, 8) = 6*b(n) - 5*b(n-1) = (n+48)*binomial(n+7, 7)/8, with b(n) = A000581(n+8) = binomial(n+8, 8).
G.f.: (6-5*x)/(1-x)^9.

A155856 Triangle T(n,k) = binomial(2*n-k, k)*(n-k)!, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 6, 1, 24, 42, 30, 10, 1, 120, 216, 168, 70, 15, 1, 720, 1320, 1080, 504, 140, 21, 1, 5040, 9360, 7920, 3960, 1260, 252, 28, 1, 40320, 75600, 65520, 34320, 11880, 2772, 420, 36, 1, 362880, 685440, 604800, 327600, 120120, 30888, 5544, 660, 45, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

Row sums of B^{-1}*A155856*B^{-1} are A000166 with B=A007318.
Downward diagonals T(n+j, n) = j!*binomial(n+j, n) = j!*seq(j), where seq(j) are sequences A010965, A010967, ..., A011101, A017714, A017716, ..., A017764, for 6 <= j <= 50, respectively. - G. C. Greubel, Jun 04 2021

Examples

			Triangle begins:
     1;
     1,    1;
     2,    3,    1;
     6,   10,    6,    1;
    24,   42,   30,   10,    1;
   120,  216,  168,   70,   15,   1;
   720, 1320, 1080,  504,  140,  21,  1;
  5040, 9360, 7920, 3960, 1260, 252, 28, 1;
		

Crossrefs

Cf. A155857 (row sums), A155858 (diagonal sums).

Programs

  • Mathematica
    Table[Binomial[2n-k,k](n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
  • Sage
    flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n,k) = binomial(2*n-k, k)*(n-k)!.
Sum_{k=0..n} T(n, k) = A155857(n)
Sum_{k=0..floor(n/2)} T(n-k, k) = A155858(n) (diagonal sums).
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-2x/(1-xy-2x/(1-xy-3x/(1-.... (continued fraction).
From G. C. Greubel, Jun 04 2021: (Start)
T(n, 0) = A000142(n). T(n+1, n) = A000217(n+1).
T(n+1, 1) = A007680(n). T(n+2, n) = A034827(n+4).
T(n+2, 2) = A175925(n). T(n+3, n) = A253946(n).
T(2*n, n) = A064352(n) T(n+4, n) = 4!*A000581(n).
T(n+1, n) = A000217(n+1). T(n+5, n) = 5!*A001287(n). (End)

A304366 Numbers with additive persistence = 1.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Jaroslav Krizek, May 11 2018

Keywords

Comments

For d >= 2, there are A000581(d+8) terms with d digits. - Robert Israel, Dec 28 2023

Examples

			Adding the digits of 10 gives 1, a single-digit number, so 10 is a member. Adding the digits of 39 gives 12, which is a 2-digit number, so 39 is not a member. - _Michael B. Porter_, May 16 2018
		

Crossrefs

Cf. Numbers with additive persistence k: A304367 (k=2), A304368 (k=3), A304373 (k=4).

Programs

  • Maple
    select(t -> convert(convert(t,base,10),`+`) < 10, [$10 .. 200]); # Robert Israel, Dec 28 2023
  • Mathematica
    Select[Range@ 120, Length@ FixedPointList[Total@ IntegerDigits@ # &, #] == 3 &] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    nb(n) = {my(nba = 0); while (n > 9, n = sumdigits(n); nba++); nba;}
    isok(n) = nb(n) == 1; \\ Michel Marcus, May 13 2018

Formula

A031286(a(n)) = 1.

A056001 a(n) = (n+1)*binomial(n+7, 7).

Original entry on oeis.org

1, 16, 108, 480, 1650, 4752, 12012, 27456, 57915, 114400, 213928, 381888, 655044, 1085280, 1744200, 2728704, 4167669, 6229872, 9133300, 13156000, 18648630, 26048880, 35897940, 48859200, 65739375, 87512256, 115345296, 150629248, 195011080, 250430400, 319159632
Offset: 0

Views

Author

Barry E. Williams, Jun 18 2000

Keywords

Comments

Original name: A second-order recursive sequence.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A052226.
Cf. A093565 ((8, 1) Pascal, column m=8).

Programs

Formula

G.f.: (1+7*x)/(1-x)^9.
a(n) = A245334(n+7,7)/A000142(7). - Reinhard Zumkeller, Aug 31 2014
a(n) = A000581(n+8)+7*A000581(n+7). - R. J. Mathar, Oct 24 2014
E.g.f.: (5040 +75600*x +194040*x^2 +170520*x^3 +66150*x^4 +12642*x^5 + 1225*x^6 +57*x^7 +x^8)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 7*Pi^2/6 - 37583/3600.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2/12 - 2912*log(2)/15 + 155701/1200. (End)

A117411 Skew triangle associated to the Euler numbers.

Original entry on oeis.org

1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Comments

Inverse is A117414. Row sums of the inverse are the Euler numbers A000364.
Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2009

Examples

			Triangle begins
  1;
  0,  1;
  0, -4,   1;
  0,  0, -12,   1;
  0,  0,  16, -24,    1;
  0,  0,   0,  80,  -40,     1;
  0,  0,   0, -64,  240,   -60,      1;
  0,  0,   0,   0, -448,   560,    -84,      1;
  0,  0,   0,   0,  256, -1792,   1120,   -112,      1;
  0,  0,   0,   0,    0,  2304,  -5376,   2016,   -144,      1;
  0,  0,   0,   0,    0, -1024,  11520, -13440,   3360,   -180,    1;
  0,  0,   0,   0,    0,     0, -11264,  42240, -29568,   5280, -220,    1;
  0,  0,   0,   0,    0,     0,   4096, -67584, 126720, -59136, 7920, -264, 1;
		

Crossrefs

Programs

  • Magma
    A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
    [A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
    flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022

Formula

Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n).
T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k).
G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - Paul Barry, Mar 14 2006
T(n, k) = (-4)^(n-k)*A098158(n,k). - Philippe Deléham, Nov 01 2009
T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 31 2013
From G. C. Greubel, Sep 07 2022: (Start)
T(n, n) = 1.
T(n, n-1) = -4*A000217(n-1), n >= 1.
T(n, n-2) = (-4)^2 * A000332(n), n >= 2.
T(n, n-3) = (-4)^3 * A000579(n), n >= 3.
T(n, n-4) = (-4)^4 * A000581(n), n >= 4.
T(2*n, n) = A262710(n). (End)
Previous Showing 21-30 of 53 results. Next