A010968
a(n) = binomial(n,15).
Original entry on oeis.org
1, 16, 136, 816, 3876, 15504, 54264, 170544, 490314, 1307504, 3268760, 7726160, 17383860, 37442160, 77558760, 155117520, 300540195, 565722720, 1037158320, 1855967520, 3247943160, 5567902560, 9364199760, 15471286560, 25140840660, 40225345056, 63432274896
Offset: 15
- T. D. Noe, Table of n, a(n) for n = 15..1000
- Milan Janjic, Two Enumerative Functions University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
[ Binomial(n,15): n in [15..70]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,15),n=15..37); # Zerinvary Lajos, Aug 06 2008
-
Table[Binomial[n,15],{n,15,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
for(n=15, 50, print1(binomial(n,15), ", ")) \\ G. C. Greubel, Aug 31 2017
Some formulas adjusted to the offset by
R. J. Mathar, Jul 07 2009
A039948
A triangle related to A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0
Triangle begins :
1;
1, 1;
4, 2, 1;
18, 12, 3, 1;
120, 72, 24, 4, 1;
960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
Diagonals include:
A000027,
A000217,
A000292,
A000332,
A000389,
A000579,
A000580,
A000581,
A000582,
A001287,
A001288,
A010965,
A010966.
-
[(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
-
T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
-
def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022
A101095
Fourth difference of fifth powers (A000584).
Original entry on oeis.org
1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive Machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 14 |
A010966 | ....... | ....... | ....... | ....... |
A254872 | ....... | .......
--------------------------------------------------------------------------------------
-
I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
-
a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
-
[1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 23 2015
A306477
Number of ways to write n as C(w+2,2) + C(x+3,4) + C(y+5,6) + C(z+7,8) with w,x,y,z nonnegative integers, where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).
Original entry on oeis.org
1, 3, 4, 4, 3, 3, 5, 6, 5, 5, 8, 8, 6, 4, 6, 10, 10, 8, 6, 6, 6, 10, 9, 6, 6, 7, 7, 6, 8, 10, 10, 7, 4, 7, 7, 9, 13, 12, 9, 6, 5, 6, 11, 12, 12, 13, 10, 9, 8, 9, 11, 15, 12, 8, 8, 10, 14, 11, 7, 8, 12, 9, 8, 9, 10, 11, 13, 8, 5, 9, 10, 13, 14, 12, 8, 7, 6, 12, 14, 14
Offset: 1
a(1) = 1 with 1 = C(2,2) + C(3,4) + C(5,6) + C(7,8).
a(4655) = 2 with 4655 = C(85,2) + C(14,4) + C(9,6) + C(7,8) = C(94,2) + C(7,4) + C(9,6) + C(11,8).
a(9590) = 2 with 9590 = C(35,2) + C(21,4) + C(7,6) + C(14,8) = C(136,2) + C(7,4) + C(10,6) + C(11,8).
a(24935) = 2 with 24935 = C(49,2) + C(29,4) + C(7,6) + C(8,8) = C(140,2) + C(26,4) + C(10,6) + C(10,8).
a(33845) = 2 with 33845 = C(104,2) + C(8,4) + C(19,6) + C(13,8) = C(148,2) + C(26,4) + C(16,6) + C(9,8).
a(192080) = 2 with 192080 = C(7,2) + C(26,4) + C(25,6) + C(9,8) = C(414,2) + C(39,4) + C(8,6) + C(17,8).
a(23343989) = 1 with 23343989 = C(365,2) + C(76,4) + C(40,6) + C(34,8).
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Positive integers written as C(w,2) + C(x,4) + C(y,6) + C(z,8) with w,x,y,z in {2,3,...}, Question 323541 on Mathoverflow, Feb. 19, 2019.
-
f[m_,n_]:=f[m,n]=Binomial[m+n-1,m]; TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
tab={};Do[r=0;Do[If[f[8,z]>=n,Goto[cc]];Do[If[f[6,y]>=n-f[8,z],Goto[bb]];Do[If[f[4,x]>=n-f[8,z]-f[6,y],Goto[aa]];If[TQ[n-f[8,z]-f[6,y]-f[4,x]],r=r+1],{x,0,n-1-f[8,z]-f[6,y]}];Label[aa],{y,0,n-1-f[8,z]}];Label[bb],{z,0,n-1}];Label[cc];tab=Append[tab,r],{n,1,80}];Print[tab]
A053137
Binomial coefficients C(2*n+8,8).
Original entry on oeis.org
1, 45, 495, 3003, 12870, 43758, 125970, 319770, 735471, 1562275, 3108105, 5852925, 10518300, 18156204, 30260340, 48903492, 76904685, 118030185, 177232627, 260932815, 377348994, 536878650, 752538150, 1040465790, 1420494075, 1916797311, 2558620845, 3381098545
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjić, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[Binomial(2*n+8,8): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
-
Table[Binomial[2*n+8, 8], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,45,495,3003,12870,43758,125970,319770,735471},30] (* Harvey P. Dale, Jul 02 2022 *)
-
a(n)=binomial(2*n+8,8) \\ Charles R Greathouse IV, Oct 07 2015
A097299
Ninth column (m=8) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 49, 225, 765, 2145, 5247, 11583, 23595, 45045, 81510, 140998, 234702, 377910, 591090, 901170, 1343034, 1961256, 2812095, 3965775, 5509075, 7548255, 10212345, 13656825, 18067725, 23666175, 30713436, 39516444, 50433900, 63882940
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A155856
Triangle T(n,k) = binomial(2*n-k, k)*(n-k)!, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 6, 1, 24, 42, 30, 10, 1, 120, 216, 168, 70, 15, 1, 720, 1320, 1080, 504, 140, 21, 1, 5040, 9360, 7920, 3960, 1260, 252, 28, 1, 40320, 75600, 65520, 34320, 11880, 2772, 420, 36, 1, 362880, 685440, 604800, 327600, 120120, 30888, 5544, 660, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 6, 1;
24, 42, 30, 10, 1;
120, 216, 168, 70, 15, 1;
720, 1320, 1080, 504, 140, 21, 1;
5040, 9360, 7920, 3960, 1260, 252, 28, 1;
-
Table[Binomial[2n-k,k](n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
-
flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A304366
Numbers with additive persistence = 1.
Original entry on oeis.org
10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116
Offset: 1
Adding the digits of 10 gives 1, a single-digit number, so 10 is a member. Adding the digits of 39 gives 12, which is a 2-digit number, so 39 is not a member. - _Michael B. Porter_, May 16 2018
-
select(t -> convert(convert(t,base,10),`+`) < 10, [$10 .. 200]); # Robert Israel, Dec 28 2023
-
Select[Range@ 120, Length@ FixedPointList[Total@ IntegerDigits@ # &, #] == 3 &] (* Michael De Vlieger, May 14 2018 *)
-
nb(n) = {my(nba = 0); while (n > 9, n = sumdigits(n); nba++); nba;}
isok(n) = nb(n) == 1; \\ Michel Marcus, May 13 2018
A056001
a(n) = (n+1)*binomial(n+7, 7).
Original entry on oeis.org
1, 16, 108, 480, 1650, 4752, 12012, 27456, 57915, 114400, 213928, 381888, 655044, 1085280, 1744200, 2728704, 4167669, 6229872, 9133300, 13156000, 18648630, 26048880, 35897940, 48859200, 65739375, 87512256, 115345296, 150629248, 195011080, 250430400, 319159632
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf.
A093565 ((8, 1) Pascal, column m=8).
-
List([0..30], n-> (n+1)*Binomial(n+7,7)); # G. C. Greubel, Aug 29 2019
-
a056001 n = (n + 1) * a007318' (n + 7) 7
-- Reinhard Zumkeller, Aug 31 2014
-
[(n+1)*Binomial(n+7,7): n in [0..30]]; // G. C. Greubel, Aug 29 2019
-
seq((n+1)*binomial(n+7,7), n=0..30); # G. C. Greubel, Aug 29 2019
-
Table[(n+1)Binomial[n+7, 7], {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011; corrected by Bruno Berselli, Jan 23 2015 *)
-
vector(30, n, n*binomial(n+6,7)) \\ G. C. Greubel, Aug 29 2019
-
[(n+1)*binomial(n+7,7) for n in (0..30)] # G. C. Greubel, Aug 29 2019
A117411
Skew triangle associated to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0
Triangle begins
1;
0, 1;
0, -4, 1;
0, 0, -12, 1;
0, 0, 16, -24, 1;
0, 0, 0, 80, -40, 1;
0, 0, 0, -64, 240, -60, 1;
0, 0, 0, 0, -448, 560, -84, 1;
0, 0, 0, 0, 256, -1792, 1120, -112, 1;
0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1;
0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1;
0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1;
0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1;
-
A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
[A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
-
T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
-
def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022
Comments