cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 601 results. Next

A217391 Partial sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 2, 11, 180, 5805, 298486, 22228975, 2258856824, 300194704049, 50529463186170, 10505093602625139, 2643441560563225468, 791779611505017309493, 278371498870260182630654, 113516551713466910954246903, 53143864598655784249290736512, 28309328562668956145157858372537
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Partial sums of A122725.

Programs

  • Magma
    A000670:=func;
    [&+[A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = Sum_{k=0..n} t(k)^2 where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014

A217392 Alternating sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 0, 9, 160, 5465, 287216, 21643273, 2214984576, 295720862649, 49933547619472, 10404630591819497, 2622531836368780832, 786513638108085303193, 276793205620647080017968, 112961387008976003691598281, 52917386659933341334644891328, 28203267311410367019573922744697
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A000670:=func;
    [&+[(-1)^(n-k)*A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n-k)t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum((-1)^(n-k)*t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*(sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = sum((-1)^(n-k)*t(k)^2, k=0..n), where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014

A290352 Euler transform of the Fubini numbers (ordered Bell numbers, A000670).

Original entry on oeis.org

1, 1, 4, 17, 98, 678, 5687, 55656, 626161, 7963511, 113027113, 1770785023, 30346490633, 564546034917, 11327726548719, 243811768229012, 5602495216123312, 136878883607160468, 3542830077444873188, 96835203745704714722, 2787051847418347608600
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          b(d, 0), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_]:=b[n, m]=If[n==0, m!, Sum[b[n - 1, Max[m, j]], {j, m + 1}]]; a[n_]:=a[n]=If[n==0, 1, Sum[Sum[d*b[d, 0], {d, Divisors[j]}] a[n - j], {j, n}]/n]; Table[a[n], {n, 0, 50}] (* Indranil Ghosh, Jul 28 2017, after Maple code *)

Formula

a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, May 31 2019

A068942 a(n) = Bo(n^2), n=0,1..., where Bo(n) are the ordered Bell numbers, A000670.

Original entry on oeis.org

1, 1, 75, 7087261, 5315654681981355, 106697365438475775825583498141, 144199280951655469628360978109406917583513090155, 27656793065414932606012896651489726461435178241015434306518713649426461
Offset: 0

Views

Author

Karol A. Penson, Mar 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PolyLog[-n^2, 1/2]/2; a[0] = 1; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Mar 30 2016 *)
    Table[Sum[k!*StirlingS2[n^2, k], {k, 0, n^2}], {n, 0, 10}] (* Vaclav Kotesovec, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=0, n^2, k!*stirling(n^2, k, 2)); \\ Seiichi Manyama, Jan 17 2022

Formula

a(n) = Sum_{k>=1} (k^(n^2))/2^(k+1); this is the analog of the Dobinski formula.
Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*(sum(exp(-ln(x)^2/(4*ln(k))) / (2^k*sqrt(ln(k))), k=2..infinity)/(4*sqrt(Pi)*x)+Dirac(x-1)/4), x=0..infinity).
a(n) ~ (n^2)! / (2 * log(2)^(n^2 + 1)). - Vaclav Kotesovec, Jun 08 2021

A305852 Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).

Original entry on oeis.org

1, 1, 3, 16, 91, 658, 5567, 54917, 620081, 7905592, 112382245, 1762646331, 30231516786, 562750751610, 11297034281595, 243241826522376, 5591075279423398, 136633359995403580, 3537193288612096901, 96697587673174195740, 2783492094736121087958
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
        Sum[g[n - j] Binomial[n, j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0,
        Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1+x^k)^A000670(k).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019

A305853 Inverse Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).

Original entry on oeis.org

1, 3, 10, 62, 446, 3975, 41098, 484152, 6390488, 93419965, 1498268466, 26159940522, 494036061550, 10035451747919, 218207845446062, 5057251219752612, 124462048466812950, 3241773988594489244, 89093816361187396674, 2576652694087236419386, 78224564280680539732266
Offset: 1

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; g(n)-b(n, n-1) end:
    seq(a(n), n=1..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
        Sum[g[n - j] Binomial[n, j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n] - b[n, n - 1];
    a /@ Range[1, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} A000670(n) * x^n.
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019

A362585 Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 13, 39, 39, 13, 75, 300, 450, 300, 75, 541, 2705, 5410, 5410, 2705, 541, 4683, 28098, 70245, 93660, 70245, 28098, 4683, 47293, 331051, 993153, 1655255, 1655255, 993153, 331051, 47293, 545835, 4366680, 15283380, 30566760, 38208450, 30566760, 15283380, 4366680, 545835
Offset: 0

Views

Author

Peter Luschny, Apr 26 2023

Keywords

Examples

			[0]    1;
[1]    1,     1;
[2]    3,     6,     3;
[3]   13,    39,    39,    13;
[4]   75,   300,   450,   300,    75;
[5]  541,  2705,  5410,  5410,  2705,   541;
[6] 4683, 28098, 70245, 93660, 70245, 28098, 4683;
		

Crossrefs

Family of triangles: A055372 (m=0, Pascal), this sequence (m=1, Fubini), A362586 (m=2, Joffe), A362849 (m=3, A278073).
Cf. A000670 (column 0 and main diagonal), A216794 (row sums).

Programs

  • SageMath
    def TransOrdPart(m, n) -> list[int]:
        @cached_function
        def P(m: int, n: int):
            R = PolynomialRing(ZZ, "x")
            if n == 0: return R(1)
            return R(sum(binomial(m * n, m * k) * P(m, n - k) * x
                     for k in range(1, n + 1)))
        T = P(m, n)
        def C(k) -> int:
            return sum(T[j] * binomial(n, k) for j in range(n + 1))
        return [C(k) for k in range(n+1)]
    def A362585(n) -> list[int]: return TransOrdPart(1, n)
    for n in range(6): print(A362585(n))

A088791 Coefficient of x^n in A(x)^n is A000670(n), which gives preferential arrangements of n labeled elements.

Original entry on oeis.org

1, 1, 1, 2, 8, 46, 337, 2976, 30627, 359222, 4725968, 68903766, 1102712316, 19219507328, 362428546833, 7352854216056, 159705991698432, 3697928742242694, 90933523698184947, 2366758931071064064
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^2 - (A[x A[x]] + x A[x]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A, m); if(n<1, n==0, m=1; A=1+x; for(i=1, n, A=(subst(A, x, x*A+x*O(x^n)) + x*A)/A); polcoeff(A, n))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Feb 11 2015

Formula

G.f. satisfies: A(x)^2 = A(x*A(x)) + x*A(x).
a(n) ~ (n-1)! / (4 * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 12 2015
O.g.f.: A(x) = x/( series reversion x*B(x) ), where B(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + ... is the o.g.f. of A084784. - Peter Bala, Jun 23 2015

A122725 a(n) = A000670(n)^2.

Original entry on oeis.org

1, 1, 9, 169, 5625, 292681, 21930489, 2236627849, 297935847225, 50229268482121, 10454564139438969, 2632936466960600329, 789136169944454084025, 277579719258755165321161, 113238180214596650771616249, 53030348046942317338336489609, 28256184698070300360908567636025
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2006

Keywords

Comments

This is also the number of possible positions of n intervals on a line having a common non-punctual intersection. Proof: Let us denoted each interval Ai (1 <= i <= n) by the string AiAi. Then the set of all such relative positions is given by the S-language [A1 ⊗ A2 ... ⊗ An]^2. The cardinality of $A1 ⊗ A2 ... ⊗ An$ is given by A000670. - Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 26 2007

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, 1, add(b(n-1, j)*j, j=k..k+1))
        end:
    a:= n-> b(n, 0)^2:
    seq(a(n), n=0..16);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    Table[(PolyLog[ -z, 1/2]/2)^2, {z, 1, 16}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006 *)
  • PARI
    {a(n)=sum(k=0, n, stirling(n, k, 2)*k!)^2} \\ Paul D. Hanna, Nov 07 2009

Formula

a(n) = Sum_{m>=0} Sum_{k>=0} ((k*m)^n/2^(k+m+2)).
G.f.: Sum_{n>=0} (1/(2-exp(n*x))/2^(n+1)).
Sum_{n>=0} a(n)*log(1+x)^n/n! = o.g.f. of A101370. - Paul D. Hanna, Nov 07 2009
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, May 03 2015

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006

A163204 Triangle read by rows, A095989 convolved with A000670.

Original entry on oeis.org

1, 1, 2, 3, 2, 8, 13, 6, 8, 48, 75, 26, 24, 48, 368, 541, 150, 104, 144, 368, 3376, 4683, 1082, 600, 624, 1104, 3376, 35824, 47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512, 545835, 94586, 37464, 25968, 27600, 43888, 107472, 430512, 5773936, 7087261, 1091670, 378344, 224784, 199088, 253200, 465712, 1291536, 5773936, 85482032
Offset: 1

Views

Author

Gary W. Adamson, Jul 23 2009

Keywords

Comments

Row sums = A000670 starting with offset 1: (1, 3, 13, 75, 541, 4683,...).
Left border = A000670, right border = A095989.
Second column: A076726. - Michel Marcus, Mar 31 2016

Examples

			First few rows of the triangle are:
1;
1, 2;
3, 2, 8;
13, 6, 8, 48;
75, 26, 24, 48, 368;
541, 150, 104, 144, 368, 3376;
4683, 1082, 600, 624, 1104, 3376, 35824;
47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512;
...
		

Crossrefs

Programs

  • Mathematica
    max = 10; Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1; A000670 = Table[ Fubini[n, 1], {n, 0, max}]; s = 1 - 1/Sum[Fubini[k, 1] q^k, {k, 0, max}] + O[q]^max; A095989 = CoefficientList[s/q, q]; row[n_] := A095989[[1 ;; n]]*Reverse[A000670[[1 ;; n]]]; Table[row[n], {n, 1, max-1}] // Flatten (* Jean-François Alcover, Mar 31 2016 *)

Formula

Descending antidiagonals of a multiplication table formed by convolving A095989 with A000670, where A095989 is the INVERTi transform of A000670 starting (1, 3, 13, 75,...).

Extensions

a(23) corrected by Jean-François Alcover, Mar 31 2016
Terms a(37) onward added by G. C. Greubel, Dec 10 2016
Previous Showing 11-20 of 601 results. Next