cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 467 results. Next

A363539 Decimal expansion of Sum_{k>=1} (H(k)^2 - (log(k) + gamma)^2)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

1, 9, 6, 8, 9, 6, 9, 0, 8, 3, 9, 1, 0, 5, 2, 8, 5, 4, 6, 4, 6, 4, 8, 9, 1, 4, 5, 3, 7, 9, 6, 6, 8, 0, 5, 4, 2, 3, 1, 1, 3, 7, 7, 9, 4, 2, 8, 6, 8, 1, 9, 8, 1, 3, 4, 4, 5, 5, 1, 4, 3, 1, 5, 3, 4, 0, 2, 2, 5, 2, 1, 9, 8, 2, 6, 8, 9, 2, 3, 3, 4, 1, 1, 8, 6, 4, 4, 9, 1, 8, 3, 7, 4, 5, 7, 6, 7, 4, 4, 0, 9, 8, 7, 8, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Comments

The formula for this sum was found by Olivier Oloa and proved by Roberto Tauraso in 2014.

Examples

			1.96896908391052854646489145379668054231137794286819...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[2] - 2*EulerGamma*StieltjesGamma[1] - 2*EulerGamma^3/3 + 5*Zeta[3]/3, 10, 120][[1]]

Formula

Equals -gamma_2 - 2*gamma*gamma_1 - (2/3)*gamma^3 + (5/3)*zeta(3), where gamma_1 and gamma_2 are the 1st and 2nd Stieltjes constants (A082633, A086279).

A363540 Decimal expansion of Sum_{k>=1} (H(k)^3 - (log(k) + gamma)^3)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

5, 8, 2, 1, 7, 4, 0, 0, 8, 5, 0, 4, 8, 6, 4, 6, 5, 2, 8, 8, 9, 6, 8, 6, 8, 6, 1, 5, 5, 0, 2, 0, 4, 1, 3, 4, 3, 1, 5, 0, 3, 3, 3, 2, 4, 3, 1, 9, 5, 7, 7, 0, 1, 1, 4, 4, 2, 4, 0, 3, 9, 2, 7, 6, 4, 7, 6, 4, 1, 3, 9, 7, 2, 2, 5, 9, 8, 1, 8, 9, 7, 4, 9, 5, 1, 8, 9, 0, 4, 2, 8, 5, 7, 4, 3, 2, 3, 1, 9, 0, 9, 6, 5, 9, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			5.82174008504864652889686861550204134315033324319577...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[3] - 3*EulerGamma*StieltjesGamma[2] - 3*EulerGamma^2*StieltjesGamma[1] - 3*EulerGamma^4/4 + 43*Zeta[4]/8, 10, 120][[1]]

Formula

Equals -gamma_3 - 3*gamma*gamma_2 - 3*gamma^2*gamma_1 - (3/4)*gamma^4 + (43/8)*zeta(4), where gamma_1, gamma_2 and gamma_3 are the 1st, 2nd and 3rd Stieltjes constants (A082633, A086279, A086280).

A093818 a(n) = gcd(A001008(n), n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 11, 1, 1, 1, 11, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, May 20 2004

Keywords

Comments

Conjecture: every odd prime occurs as a term in the sequence.
Observation: Terms other than 1 are rare. Of the terms a(1) .. a(29524), only 187 are larger than one. Among these 187 terms, the following 50 distinct values occur: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 227, 257, 269, 509, 863, 919, 1049, 1331, 9409, 11881. Of these, all other are primes except 121 = 11*11, 1331 = 11*11*11, 9409 = 97*97 and 11881 = 109*109. - Antti Karttunen, Aug 28 2017

Crossrefs

Programs

Extensions

More terms from David Wasserman, Apr 20 2007
Name edited (A001008 substituted for "Wolstenholme") by Antti Karttunen, Aug 28 2017

A120263 Ratio of the numerator of n*HarmonicNumber[n] to the numerator of HarmonicNumber[n]: A096617(n)/A001008(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 26 2006

Keywords

Comments

a(n) is not equal to 1 when n belongs to A074791 - numbers n such that n does not divide the denominator of the n-th harmonic number.
a(n) is almost always equal to 1 except for n=6,18,20,21,33,42,54,.. when a(n) seems to be equal to a prime divisor of n.
a(n) could be equal to a squared prime divisor of n as for n=100,294,500,847,..

Crossrefs

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n))/Numerator(HarmonicNumber(n)): n in [1..100]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Numerator[Table[n*Sum[1/i,{i,1,n}],{n,1,500}]]/Numerator[Table[Sum[1/i,{i,1,n}],{n,1,500}]]
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,100, print1(numerator(n*h(n))/numerator(h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    

Formula

a(n) = A096617(n)/A001008(n) = numerator[n*Sum[1/i,{i,1,n}]] / numerator[Sum[1/i,{i,1,n}]].
a(n) = n / gcd(denominator(H(n)),n), where H(n) = sum(1/k, k=1..n). [Gary Detlefs, Sep 05 2011]
a(n) = A096617(n)*A110566(n)/A025529(n). [Arkadiusz Wesolowski, Mar 29 2012]

A120308 Numerator((p-1)*H(p-1))/p^2 for p = prime(n) > 3, where H(k) is k-th harmonic number A001008(k)/A002805(k).

Original entry on oeis.org

1, 3, 61, 509, 8431, 118623, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 46600968591317, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 139715526178793824689891
Offset: 3

Views

Author

Alexander Adamchuk, Jul 16 2006

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((NthPrime(n)-1)*HarmonicNumber(NthPrime(n)-1)/NthPrime(n)^2): n in [3..25]]; // G. C. Greubel, Sep 02 2018
  • Maple
    N:= 50: # to get the first N terms
    Primes:= select(isprime,[seq(2*i+1,i=2..(ithprime(N+2)-1)/2)]):
    H:= ListTools[PartialSums]([seq(1/i,i=1..Primes[-1]-1)]):
    seq(numer((p-1)*H[p-1])/p^2, p=Primes); # Robert Israel, Sep 09 2014
  • Mathematica
    Numerator[Table[(Prime[n]-1)*(Sum[(1/k), {k, 1, Prime[n]-1}]),{n,3,20}]]/Table[Prime[n]^2,{n,3,20}]
    Table[((p-1)HarmonicNumber[p-1])/p^2,{p,Prime[Range[2,20]]}]//Numerator (* Harvey P. Dale, May 19 2021 *)
  • PARI
    {a(n) = numerator((prime(n)-1)*sum(k=1,prime(n)-1, 1/k)/prime(n)^2)};
    for(n=3,25, print1(a(n), ", ")) \\ G. C. Greubel, Sep 02 2018
    

Formula

a(n) = numerator((prime(n)-1)*(Sum_{k=1..prime(n)-1} 1/k))/prime(n)^2 for n > 2.
a(n) = A096617(p-1)/p^2 for p = prime(n) > 3.

A153357 Numbers n such that the harmonic number numerator A001008(n) is a semiprime.

Original entry on oeis.org

4, 6, 11, 14, 15, 17, 19, 20, 23, 25, 31, 33, 34, 35, 37, 39, 49, 53, 55, 59, 61, 68, 90, 93, 94, 101, 116, 117, 121, 124, 145, 155, 158, 163, 169, 170, 186, 193, 194, 199, 205, 211, 214, 245, 258, 259, 264, 267, 283, 311, 315, 328, 340, 347, 359, 365, 371, 385
Offset: 1

Views

Author

Alexander Adamchuk, Dec 24 2008

Keywords

Comments

414, 421, 425, 436, 451, 452, and 480 are in the sequence. 391 and 476 are the remaining candidates below 500. - Daniel M. Jensen, Jun 26 2020
Numerator(H_391) is fully factored and confirmed semiprime with the help of NFS@Home. - Tyler Busby, May 06 2024

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615

Crossrefs

Cf. A001008 (numerators of harmonic number H(n)=Sum_{i=1..n} 1/i).

Extensions

More terms from Sean A. Irvine, Aug 22 2011
Two missing terms added by D. S. McNeil, Aug 23 2011
More terms from Sean A. Irvine, Apr 01 2013
Two more terms from Daniel M. Jensen, Jun 26 2020

A229493 Irregular triangle in which row n has numbers k such that prime(n) divides A001008(k), the numerator of the k-th harmonic number.

Original entry on oeis.org

2, 7, 22, 4, 20, 24, 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728, 3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888, 958, 962, 966, 1291, 1293, 9328, 9331, 9335, 9338, 9376, 9378, 10583, 10587, 10591, 14205, 14207
Offset: 2

Views

Author

T. D. Noe and Arkadiusz Wesolowski, Nov 11 2013

Keywords

Comments

The length of each row is given in A092103.

Examples

			The irregular triangle begins:
2, 7, 22
4, 20, 24
6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728
3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888,...
		

Crossrefs

Cf. A092103 (number of k for which prime(n) divides A001008(k)).

Programs

  • Mathematica
    (* rows 2, 3, and part of 4 *) h = ParallelTable[Numerator[HarmonicNumber[i]], {i, 10000}]; Flatten[Table[Position[h, _?(Mod[#, p] == 0 &)], {p, {3, 5, 7}}]]

A309397 a(n) = gcd(n^2, A001008(n-1)) for n > 1.

Original entry on oeis.org

1, 3, 1, 25, 1, 49, 1, 1, 1, 121, 1, 169, 1, 1, 1, 289, 1, 361, 1, 1, 1, 529, 1, 5, 1, 1, 1, 841, 1, 961, 1, 1, 1, 1, 1, 1369, 1, 1, 1, 1681, 1, 1849, 1, 1, 1, 2209, 1, 7, 1, 1, 1, 2809, 1, 1, 1, 1, 1, 3481, 1, 3721, 1, 1, 1, 1, 1, 4489, 1, 1, 1, 5041, 1, 5329
Offset: 2

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 28 2019

Keywords

Comments

By Wolstenholme's theorem, if p > 3 is prime, then a(p) = p^2.
Conjecture: for n > 3, if a(n) = n^2, then n is a prime.
Note: the weak pseudoprimes n such that a(n) = n are not known.
Composite numbers m <> p^2 for which a(m) > 1 are the same as in A309391: 88, 1290, 9339, ...

Examples

			a(11) = gcd(11^2, A001008(11-1)) = gcd(121, 7381) = 121.
		

Crossrefs

Cf. A001008, A007406 (see our comment), A309391.

Programs

  • Magma
    [Gcd(k^2, Numerator(HarmonicNumber(k-1))):k in [2..80]]; // Marius A. Burtea, Jul 28 2019
    
  • Mathematica
    a[n_] := GCD[n^2, Numerator[HarmonicNumber[n-1]]]; Array[a, 72, 2]
  • Python
    from sympy import gcd, harmonic
    def A309387(n):
        return gcd(n**2,harmonic(n-1).p) # Chai Wah Wu, Jul 31 2019

Formula

a(n) = A309391(n) for composite n.
a(p) = p^2 for every prime p > 3.
a(p^2) = p iff p > 3 is a prime.

A348373 Decimal expansion of Sum_{k>=1} H(k)^2/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 1, 2, 5, 3, 8, 7, 0, 8, 0, 7, 6, 6, 4, 2, 7, 8, 6, 1, 1, 3, 9, 5, 1, 7, 6, 9, 2, 9, 7, 2, 6, 9, 0, 1, 6, 0, 9, 4, 9, 5, 0, 2, 8, 5, 2, 8, 0, 1, 3, 4, 4, 0, 2, 4, 6, 0, 2, 4, 2, 2, 3, 6, 2, 9, 9, 3, 6, 7, 2, 8, 5, 2, 6, 6, 3, 0, 3, 5, 3, 4, 6, 0, 3, 3, 5, 7, 7, 1, 6, 4, 0, 6, 3, 6, 8, 5, 6, 9, 6, 2, 3, 6, 7, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			2.12538708076642786113951769297269016094950285280134...
		

Crossrefs

Similar constants: A016627, A076788.

Programs

  • Mathematica
    RealDigits[Pi^2/6 + Log[2]^2, 10, 100][[1]]

Formula

Equals Pi^2/6 + log(2)^2 = A013661 + A253191.

A360029 Consider a ruler composed of n segments with lengths 1, 1/2, 1/3, ..., 1/n with total length A001008(n)/A002805(n). a(n) is the minimum number of distinct distances of all pairs of marks that can be achieved by permuting the positions of the segments.

Original entry on oeis.org

1, 3, 6, 10, 15, 18, 25, 33, 42, 52, 63, 71, 84, 98, 107, 123, 140, 152, 171, 185, 198, 220, 243, 256, 281, 307, 334, 354, 383, 403, 434, 466, 489, 523, 552, 581, 618, 656, 695, 728
Offset: 1

Views

Author

Hugo Pfoertner, Jan 22 2023

Keywords

Comments

Without permutation of the arrangement of the segments, the number of distinct distances between any pair of marks is n*(n+1)/2.

Examples

			a(6) = 18: permuted segment lengths 1, 1/4, 1/2, 1/3, 1/6, 1/5 -> marks at 0, 1, 5/4, 7/4, 25/12, 9/4, 49/20 -> 18 distinct distances 1/6, 1/5, 1/4, 1/3, 11/30, 1/2, 7/10, 3/4, 5/6, 1, 13/12, 6/5, 5/4, 29/20, 7/4, 25/12, 9/4, 49/20, whereas the non-permuted ruler with marks at 0, 1, 3/2, 11/6, 25/12, 137/60, 49/20 gives 21 distinct distances 1/6, 1/5, 1/4, 1/3, 11/30, 9/20, 1/2, 7/12, 37/60, 47/60, 5/6, 19/20, 1, 13/12, 77/60, 29/20, 3/2, 11/6, 25/12, 137/60, 49/20.
		

Crossrefs

Programs

  • PARI
    a360029(n) = {if (n<=1, 1, my (mi=oo); w = vectorsmall(n-1, i, i+1);
    forperm (w, p, my(v=vector(n,i,1/i), L=List(v)); for (m=1, n, v[m] = 1 + sum (k=1, m-1, 1/p[k]); listput(L, v[m])); for (i=1, n-1, for (j=i+1, n, listput (L, v[j]-v[i]))); mi = min(mi, #Set(L))); mi)};

Extensions

a(39)-a(40) from Hugo Pfoertner, Feb 19 2023
Previous Showing 31-40 of 467 results. Next