cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 92 results. Next

A013716 a(n) = 11^(2*n + 1).

Original entry on oeis.org

11, 1331, 161051, 19487171, 2357947691, 285311670611, 34522712143931, 4177248169415651, 505447028499293771, 61159090448414546291, 7400249944258160101211, 895430243255237372246531
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001020 (11^n).

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 121*a(n-1), a(0)=11.
G.f.: 11/(1-121*x). (End)

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021

A009988 Powers of 44.

Original entry on oeis.org

1, 44, 1936, 85184, 3748096, 164916224, 7256313856, 319277809664, 14048223625216, 618121839509504, 27197360938418176, 1196683881290399744, 52654090776777588736, 2316779994178213904384, 101938319743841411792896, 4485286068729022118887424, 197352587024076973231046656
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 44), L(1, 44), P(1, 44), T(1, 44). Essentially same as Pisot sequences E(44, 1936), L(44, 1936), P(44, 1936), T(44, 1936). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 44-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-44*x). - Philippe Deléham, Nov 24 2008
a(n) = 44^n; a(n) = 44*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(44*x).
a(n) = A000079(n)*A009966(n) = A000302(n)*A001020(n). (End)

A139745 a(n) = 11^n - 7^n.

Original entry on oeis.org

0, 4, 72, 988, 12240, 144244, 1653912, 18663628, 208594080, 2317594084, 25654949352, 283334343868, 3124587089520, 34425823133524, 379071610510392, 4172500607905708, 45916496933002560, 505214397985306564, 5558288899894321032, 61147691553229173148, 672670202666262397200
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Programs

  • Magma
    [11^n-7^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
  • Mathematica
    Table[11^n-7^n,{n,0,30}] (* or *) LinearRecurrence[{18,-77},{0,4},30] (* Harvey P. Dale, Jun 17 2014 *)

Formula

a(n) = 18*a(n-1) - 77*a(n-2). - Vincenzo Librandi, Jun 02 2011
From Stefano Spezia, Mar 09 2025: (Start)
G.f.: 4*x/((1 - 11*x)*(1 - 7*x)).
E.g.f.: exp(7*x)*(exp(4*x) - 1). (End)
a(n) = 4*A016183(n-1) for n >= 1. - Elmo R. Oliveira, Apr 01 2025

A220653 a(n) = n^11 + 11*n + 11^n.

Original entry on oeis.org

1, 23, 2191, 178511, 4208989, 48989231, 364568683, 1996813991, 8804293561, 33739007399, 125937424711, 570623341343, 3881436747541, 36314872538111, 383799398753059, 4185897925275191, 45967322049616753, 505481300395601591, 5559981581902310911, 61159206938673444719
Offset: 0

Views

Author

Jonathan Vos Post, Dec 17 2012

Keywords

Comments

This is to A220425 as 11 is to 2, to A220509 as 11 is to 3, to A220511 as 11 is to 5, and to A220528 as 11 is to 7.
The subsequence of primes begins: 23, 4185897925275191, see A220787 for the associated n.

Examples

			a(1) = 1^11 + 11*1 + 11^1 = 23.
		

Crossrefs

Programs

  • Mathematica
    Table[n^11 + 11*n + 11^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
  • Maxima
    A220653(n):=n^11+11*n+11^n$ makelist(A220653(n),n,0,20); /* Martin Ettl, Dec 17 2012 */

Formula

a(n) = A008455(n) + A008593(n) + A001020(n).
G.f.: (131*x^12 +21186*x^11 +1682460*x^10 +24070936*x^9 +104942001*x^8 +163196604*x^7 +91422264*x^6 +14484216*x^5 -518211*x^4 -131726*x^3 -1860*x^2 -1) / ((x -1)^12*(11*x -1)). - Colin Barker, May 09 2013

Extensions

a(19) from Stefano Spezia, May 03 2025

A097659 a(n) = 1001^n.

Original entry on oeis.org

1, 1001, 1002001, 1003003001, 1004006004001, 1005010010005001, 1006015020015006001, 1007021035035021007001, 1008028056070056028008001, 1009036084126126084036009001, 1010045120210252210120045010001, 1011055165330462462330165055011001, 1012066220495792924792495220066012001
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 18 2004

Keywords

Comments

694 is the smallest exponent e such that 1001^e begins with a digit greater than 1: A000030(a(694)) = 2, A000030(a(693)) = 1. - Reinhard Zumkeller, Nov 05 2010
a(n) gives the n-th row of Pascal's triangle (A007318) as long as all the binomial coefficients have at most three digits, otherwise the binomial coefficients with more than three digits overlap. - Daniel Forgues, Aug 12 2012

References

  • Rozsa Peter, Playing with Infinity, New York, Dover Publications, 1957.

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 1001*a(n-1), n > 0; a(0)=1.
G.f.: 1/(1-1001*x). (End)
From Elmo R. Oliveira, Jul 06 2025: (Start)
E.g.f.: exp(1001*x).
a(n) = 91^n * A001020(n). (End)

Extensions

More terms from Elmo R. Oliveira, Jul 06 2025

A130652 a(n) = 11^n - 2.

Original entry on oeis.org

9, 119, 1329, 14639, 161049, 1771559, 19487169, 214358879, 2357947689, 25937424599, 285311670609, 3138428376719, 34522712143929, 379749833583239, 4177248169415649, 45949729863572159, 505447028499293769, 5559917313492231479, 61159090448414546289, 672749994932560009199
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

There are only two known primes in a(n): a(4) = 14639 and a(6) = 1771559 (see A128472 = smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists). 3 divides a(2k-1). 7 divides a(3k-1). 13 divides a(12k-5). 17 divides a(16k-14).
Final digit of a(n) is 9.
Final two digits of a(n) are periodic with period 10: a(n) mod 100 = {09, 19, 29, 39, 49, 59, 69, 79, 89, 99}.
Final three digits of a(n) are periodic with period 50: a(n) mod 1000 = {009, 119, 329, 639, 049, 559, 169, 879, 689, 599, 609, 719, 929, 239, 649, 159, 769, 479, 289, 199, 209, 319, 529, 839, 249, 759, 369, 079, 889, 799, 809, 919, 129, 439, 849, 359, 969, 679, 489, 399, 409, 519, 729, 039, 449, 959, 569, 279, 089, 999}.

Crossrefs

Cf. A001020, A024127, A034524. Cf. A104096 = Largest prime <= 11^n. Cf. A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf. A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf. A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461.

Programs

  • Magma
    [11^n - 2: n in [1..50]]; // Vincenzo Librandi, Jun 08 2011
  • Mathematica
    LinearRecurrence[{12, -11},{9, 119},17] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = 11*a(n-1) + 20; a(1)=9. - Vincenzo Librandi, Jun 08 2011
From Elmo R. Oliveira, Jun 16 2025: (Start)
G.f.: x*(11*x+9)/((11*x-1)*(x-1)).
E.g.f.: 1 + exp(x)*(exp(10*x) - 2).
a(n) = 12*a(n-1) - 11*a(n-2) for n > 2. (End)

A139740 a(n) = 11^n - 2^n.

Original entry on oeis.org

0, 9, 117, 1323, 14625, 161019, 1771497, 19487043, 214358625, 2357947179, 25937423577, 285311668563, 3138428372625, 34522712135739, 379749833566857, 4177248169382883, 45949729863506625, 505447028499162699, 5559917313491969337, 61159090448414022003, 672749994932558960625
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 13*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Jun 02 2011
a(n) = A001020(n) - A000079(n). - Michel Marcus, Feb 28 2022
a(n) = 9*A016135(n-1), n > 0. - Bernard Schott, Mar 09 2022
E.g.f.: exp(2*x)*(exp(9*x) - 1). - Stefano Spezia, Mar 09 2025
G.f.: 9*x/((1-2*x)*(1-11*x)). - Elmo R. Oliveira, Mar 15 2025

A139742 a(n) = 11^n - 4^n.

Original entry on oeis.org

0, 7, 105, 1267, 14385, 160027, 1767465, 19470787, 214293345, 2357685547, 25936376025, 285307476307, 3138411599505, 34522645035067, 379749565147785, 4177247095673827, 45949725568604865, 505447011319424587, 5559917244772754745, 61159090173536639347, 672749993833048381425
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Programs

  • Magma
    [11^n-4^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
  • Mathematica
    Table[11^n-4^n,{n,0,30}] (* or *) LinearRecurrence[{15,-44},{0,7},30] (* Harvey P. Dale, Dec 10 2013 *)

Formula

a(n) = 15*a(n-1) - 44*a(n-2). - Vincenzo Librandi, Jun 02 2011
From Elmo R. Oliveira, Apr 01 2025: (Start)
G.f.: 7*x/((1-4*x)*(1-11*x)).
E.g.f.: 2*exp(15*x/2)*sinh(7*x/2).
a(n) = 7*A016158(n-1) for n >= 1. (End)

A164899 Binomial matrix (1,10^n) read by antidiagonals.

Original entry on oeis.org

1, 1, 10, 1, 11, 100, 1, 12, 110, 1000, 1, 13, 121, 1100, 10000, 1, 14, 133, 1210, 11000, 100000, 1, 15, 146, 1331, 12100, 110000, 1000000, 1, 16, 160, 1464, 13310, 121000, 1100000, 10000000, 1, 17, 175, 1610, 14641, 133100, 1210000, 11000000, 100000000
Offset: 1

Views

Author

Mark Dols, Aug 30 2009

Keywords

Examples

			Matrix array, A(n, k), begins:
  1, 10, 100, 1000, ...
  1, 11, 110, 1100, ...
  1, 12, 121, 1210, ...
  1, 13, 133, 1331, ...
  1, 14, 146, 1464, ...
  1, 15, 160, 1610, ...
Antidiagonal triangle, T(n, k), begins as:
  1;
  1, 10;
  1, 11, 100;
  1, 12, 110, 1000;
  1, 13, 121, 1100, 10000;
  1, 14, 133, 1210, 11000, 100000;
  1, 15, 146, 1331, 12100, 110000, 1000000;
		

Crossrefs

Cf. A094704 (antidiagonal row sums).

Programs

  • Magma
    function T(n,k) // T = A164899
      if k eq n then return 10^(n-1);
      elif k eq 1 then return 1;
      else return T(n-1,k) + T(n-2,k-1);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 10 2023
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==n, 10^(n-1), If[k==1, 1, T[n-1,k] +T[n-2, k-1]]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
  • SageMath
    def T(n,k): # T = A164899
        if (k==n): return 10^(n-1)
        elif (k==1): return 1
        else: return T(n-1,k) + T(n-2,k-1)
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 10 2023

Formula

Sum_{k=1..n} T(n, k) = A094704(n).
As a triangle T(n,k) read by rows, T(n,1) = 1, T(n,n) = 10^(n-1), and T(n,k) = T(n-1, k) + T(n-2, k-1) otherwise. - Joerg Arndt, Dec 10 2016
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = A(n-1, k) + A(n-1, k-1), with A(n, 1) = 1 and A(1, k) = 10^(k-1) (array).
T(n, k) = A(n-k+1, k) (antidiagonal triangle). (End)
Previous Showing 31-40 of 92 results. Next