A013716
a(n) = 11^(2*n + 1).
Original entry on oeis.org
11, 1331, 161051, 19487171, 2357947691, 285311670611, 34522712143931, 4177248169415651, 505447028499293771, 61159090448414546291, 7400249944258160101211, 895430243255237372246531
Offset: 0
A073211
Sum of two powers of 11.
Original entry on oeis.org
2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0
T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
2;
12, 22;
122, 132, 242;
1332, 1342, 1452, 2662;
14642, 14652, 14762, 15972, 29282;
...
Sums of two powers of n:
A073423 (0),
A007395 (1),
A173786 (2),
A055235 (3),
A055236 (4),
A055237 (5),
A055257 (6),
A055258 (7),
A055259 (8),
A055260 (9),
A052216 (10),
A194887 (12),
A072390 (13),
A055261 (16),
A073213 (17),
A073214 (19),
A073215 (23).
-
t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
-
from math import isqrt
def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025
Original entry on oeis.org
1, 44, 1936, 85184, 3748096, 164916224, 7256313856, 319277809664, 14048223625216, 618121839509504, 27197360938418176, 1196683881290399744, 52654090776777588736, 2316779994178213904384, 101938319743841411792896, 4485286068729022118887424, 197352587024076973231046656
Offset: 0
A139745
a(n) = 11^n - 7^n.
Original entry on oeis.org
0, 4, 72, 988, 12240, 144244, 1653912, 18663628, 208594080, 2317594084, 25654949352, 283334343868, 3124587089520, 34425823133524, 379071610510392, 4172500607905708, 45916496933002560, 505214397985306564, 5558288899894321032, 61147691553229173148, 672670202666262397200
Offset: 0
-
[11^n-7^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
-
Table[11^n-7^n,{n,0,30}] (* or *) LinearRecurrence[{18,-77},{0,4},30] (* Harvey P. Dale, Jun 17 2014 *)
A220653
a(n) = n^11 + 11*n + 11^n.
Original entry on oeis.org
1, 23, 2191, 178511, 4208989, 48989231, 364568683, 1996813991, 8804293561, 33739007399, 125937424711, 570623341343, 3881436747541, 36314872538111, 383799398753059, 4185897925275191, 45967322049616753, 505481300395601591, 5559981581902310911, 61159206938673444719
Offset: 0
a(1) = 1^11 + 11*1 + 11^1 = 23.
A097659
a(n) = 1001^n.
Original entry on oeis.org
1, 1001, 1002001, 1003003001, 1004006004001, 1005010010005001, 1006015020015006001, 1007021035035021007001, 1008028056070056028008001, 1009036084126126084036009001, 1010045120210252210120045010001, 1011055165330462462330165055011001, 1012066220495792924792495220066012001
Offset: 0
- Rozsa Peter, Playing with Infinity, New York, Dover Publications, 1957.
A130652
a(n) = 11^n - 2.
Original entry on oeis.org
9, 119, 1329, 14639, 161049, 1771559, 19487169, 214358879, 2357947689, 25937424599, 285311670609, 3138428376719, 34522712143929, 379749833583239, 4177248169415649, 45949729863572159, 505447028499293769, 5559917313492231479, 61159090448414546289, 672749994932560009199
Offset: 1
Cf.
A001020,
A024127,
A034524. Cf.
A104096 = Largest prime <= 11^n. Cf.
A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf.
A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf.
A014224,
A109080,
A090669,
A128455,
A128457,
A128458,
A128459,
A128460,
A128461.
A139740
a(n) = 11^n - 2^n.
Original entry on oeis.org
0, 9, 117, 1323, 14625, 161019, 1771497, 19487043, 214358625, 2357947179, 25937423577, 285311668563, 3138428372625, 34522712135739, 379749833566857, 4177248169382883, 45949729863506625, 505447028499162699, 5559917313491969337, 61159090448414022003, 672749994932558960625
Offset: 0
-
[11^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
-
Table[11^n - 2^n, {n, 0, 20}] (* or *)
LinearRecurrence[{13, -22}, {0, 9}, 21] (* Paolo Xausa, Mar 16 2025 *)
-
a(n)=11^n-2^n \\ Charles R Greathouse IV, Mar 26 2012
-
[11**n-2**n for n in range(20)] # Gennady Eremin, Mar 05 2022
-
[11^n - 2^n for n in range(0,20)] # Zerinvary Lajos, Jun 05 2009
A139742
a(n) = 11^n - 4^n.
Original entry on oeis.org
0, 7, 105, 1267, 14385, 160027, 1767465, 19470787, 214293345, 2357685547, 25936376025, 285307476307, 3138411599505, 34522645035067, 379749565147785, 4177247095673827, 45949725568604865, 505447011319424587, 5559917244772754745, 61159090173536639347, 672749993833048381425
Offset: 0
-
[11^n-4^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
-
Table[11^n-4^n,{n,0,30}] (* or *) LinearRecurrence[{15,-44},{0,7},30] (* Harvey P. Dale, Dec 10 2013 *)
A164899
Binomial matrix (1,10^n) read by antidiagonals.
Original entry on oeis.org
1, 1, 10, 1, 11, 100, 1, 12, 110, 1000, 1, 13, 121, 1100, 10000, 1, 14, 133, 1210, 11000, 100000, 1, 15, 146, 1331, 12100, 110000, 1000000, 1, 16, 160, 1464, 13310, 121000, 1100000, 10000000, 1, 17, 175, 1610, 14641, 133100, 1210000, 11000000, 100000000
Offset: 1
Matrix array, A(n, k), begins:
1, 10, 100, 1000, ...
1, 11, 110, 1100, ...
1, 12, 121, 1210, ...
1, 13, 133, 1331, ...
1, 14, 146, 1464, ...
1, 15, 160, 1610, ...
Antidiagonal triangle, T(n, k), begins as:
1;
1, 10;
1, 11, 100;
1, 12, 110, 1000;
1, 13, 121, 1100, 10000;
1, 14, 133, 1210, 11000, 100000;
1, 15, 146, 1331, 12100, 110000, 1000000;
Cf.
A094704 (antidiagonal row sums).
-
function T(n,k) // T = A164899
if k eq n then return 10^(n-1);
elif k eq 1 then return 1;
else return T(n-1,k) + T(n-2,k-1);
end if; return T;
end function;
[T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 10 2023
-
T[n_, k_]:= T[n,k]= If[k==n, 10^(n-1), If[k==1, 1, T[n-1,k] +T[n-2, k-1]]];
Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
-
def T(n,k): # T = A164899
if (k==n): return 10^(n-1)
elif (k==1): return 1
else: return T(n-1,k) + T(n-2,k-1)
flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 10 2023
Comments