cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 92 results. Next

A013617 Triangle of coefficients in expansion of (1+10x)^n.

Original entry on oeis.org

1, 1, 10, 1, 20, 100, 1, 30, 300, 1000, 1, 40, 600, 4000, 10000, 1, 50, 1000, 10000, 50000, 100000, 1, 60, 1500, 20000, 150000, 600000, 1000000, 1, 70, 2100, 35000, 350000, 2100000, 7000000, 10000000, 1, 80, 2800, 56000, 700000, 5600000, 28000000, 80000000, 100000000
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,10} having n-k zeros. - Milan Janjic, Jul 24 2015

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+10*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015

Formula

G.f.: 1 / (1 - x(1+10y)).
T(n,k) = 10^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*9^(n-i). Row sums are 11^n = A001020. - Mircea Merca, Apr 28 2012

A016823 a(n) = (4n+1)^11.

Original entry on oeis.org

1, 48828125, 31381059609, 1792160394037, 34271896307633, 350277500542221, 2384185791015625, 12200509765705829, 50542106513726817, 177917621779460413, 550329031716248441, 1532278301220703125, 3909821048582988049, 9269035929372191597, 20635899893042801193
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n+1)^11 : n in [0..20]]; // Wesley Ivan Hurt, Oct 10 2014
  • Maple
    A016823:=n->(4*n+1)^11: seq(A016823(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Table[(4 n + 1)^11, {n, 0, 20}] (* Wesley Ivan Hurt, Oct 10 2014 *)
    CoefficientList[Series[(1 + 48828113 x + 30795122175 x^2 + 1418810334759 x^3 + 14826379326378 x^4 + 50417667664170 x^5 + 64020606756990 x^6 + 31088834650350 x^7 + 5356480404741 x^8 + 261595441397 x^9 + 1975200979 x^10 + 177147 x^11)/(x - 1)^12, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 10 2014 *)

Formula

From Wesley Ivan Hurt, Oct 10 2014 : (Start)
G.f.: (1 + 48828113*x + 30795122175*x^2 + 1418810334759*x^3 + 14826379326378*x^4 + 50417667664170*x^5 + 64020606756990*x^6 + 31088834650350*x^7 + 5356480404741*x^8 + 261595441397*x^9 + 1975200979*x^10 + 177147*x^11) / (x - 1)^12.
Recurrence: a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12).
a(n) = A016813(n)^11 = A001020(A016813(n)). (End)
Sum_{n>=0} 1/a(n) = 50521*Pi^11/29727129600 + 2047*zeta(11)/4096. - Amiram Eldar, Apr 21 2023

A056002 a(n) = (10^2)*11^(n-2); a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 100, 1100, 12100, 133100, 1464100, 16105100, 177156100, 1948717100, 21435888100, 235794769100, 2593742460100, 28531167061100, 313842837672100, 3452271214393100, 37974983358324100, 417724816941565100
Offset: 0

Views

Author

Barry E. Williams, Jun 18 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9,10,11} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9,10,11} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 10*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A001020.

Programs

  • Mathematica
    Join[{1,9},100*11^Range[0,20]] (* or *) Join[{1,9},NestList[11#&,100,20]] (* Harvey P. Dale, May 24 2012 *)

Formula

a(n)=11a(n-1)+[(-1)^n]*C(2, 2-n). G.f.(x)=(1-x)^2/(1-11x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*9^k. - Philippe Deléham, Dec 05 2011

Extensions

More terms from James Sellers, Jul 04 2000

A091946 a(n) = floor(11^n/10^n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 23, 25, 28, 30, 34, 37, 41, 45, 49, 54, 60, 66, 72, 80, 88, 97, 106, 117, 129, 142, 156, 171, 189, 207, 228, 251, 276, 304, 334, 368, 405, 445, 490, 539, 593, 652, 717, 789
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2004

Keywords

Examples

			a(2) = floor(1.1^2) = floor(1.21) = 1.
		

Crossrefs

Programs

  • Magma
    [Floor(11^n / 10^n): n in [0..70]]; // Vincenzo Librandi, Sep 08 2011
  • Mathematica
    Table[ Floor[(11/10)^n], {n, 0, 70}]

Formula

a(n) = floor(1.1^n) = floor(A001020(n)/A011557(n)).

Extensions

More terms from Robert G. Wilson v, May 26 2004

A092846 a(n) = 100...001^n, where there are just enough zeros for the result to display the terms in the n-th row of Pascal's triangle.

Original entry on oeis.org

1, 11, 121, 1331, 14641, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1009036084126126084036009001, 1010045120210252210120045010001, 1011055165330462462330165055011001, 1012066220495792924792495220066012001
Offset: 0

Views

Author

Jorge Coveiro, Apr 15 2004

Keywords

Examples

			a(0)=11^0
a(1)=11^1
a(2)=11^2
a(3)=11^3
a(4)=11^4
a(5)=101^5
a(6)=101^6
a(7)=101^7
a(8)=101^8
a(9)=1001^9
a(10)=1001^10
a(11)=1001^11
		

Crossrefs

Programs

Formula

a(n) = (10^k + 1)^n, where k is the number of digits in A001405(n). - Eric M. Schmidt, Apr 04 2014

A139743 a(n) = 11^n - 5^n.

Original entry on oeis.org

0, 6, 96, 1206, 14016, 157926, 1755936, 19409046, 213968256, 2355994566, 25927658976, 285262842486, 3138184236096, 34521491440806, 379743730067616, 4177217651837526, 45949577275681536, 505446265559840646, 5559913498794965856, 61159071374928218166, 672749899565128368576
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. A000351 (5^n), A001020 (11^n), A016165.

Programs

Formula

a(n) = 16*a(n-1) - 55*a(n-2). - Vincenzo Librandi, Jun 02 2011
a(n) = 6*A016165(n-1) for n >= 1. - Philippe Deléham, Mar 23 2023
From Elmo R. Oliveira, Apr 01 2025: (Start)
G.f.: 6*x/((1-5*x)*(1-11*x)).
E.g.f.: 2*exp(8*x)*sinh(3*x). (End)

A159850 Numerator of Hermite(n, 17/22).

Original entry on oeis.org

1, 17, 47, -7429, -160415, 4464217, 269993839, -1892147821, -489536076223, -4658915114335, 987008017069999, 28053710866880683, -2150502256703365727, -118026514721378720791, 4759029349325350323695, 480777330814562061542723, -9102061914203466628786559
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 17/11, 47/121, -7429/1331, -160415/14641, ...
		

Crossrefs

Cf. A001020 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(17/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Maple
    f:= gfun:-rectoproc({a(n) = 17*a(n-1)+242*(1-n)*a(n-2), a(0)=1,a(1)=17},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Dec 07 2017
  • Mathematica
    Numerator[Table[HermiteH[n,17/22],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[11^n*HermiteH[n, 17/22], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 17/22)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) = 17*a(n-1) + 242*(1-n)*a(n-2). - Robert Israel, Dec 07 2017
E.g.f.: exp(17*x - 121*x^2). - Simon Plouffe, Jun 23 2018
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 11^n * Hermite(n, 17/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/11)^(n-2*k)/(k!*(n-2*k)!)). (End)

A161999 For n even a(n) = a(n-1) + 10*a(n-2), for n odd a(n) = a(n-3) + 10 a(n-2); with a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 1, 1, 10, 20, 101, 301, 1030, 4040, 10601, 51001, 110050, 620060, 1151501, 7352101, 12135070, 85656080, 128702801, 985263601, 1372684090, 11225320100, 14712104501, 126965305501, 158346365110, 1427999420120
Offset: 1

Views

Author

Mark Dols, Jun 24 2009, Jun 28 2009, Jul 13 2009

Keywords

Examples

			As pairs:
0, 1
1, 10
20, 101
301, 1030
4040, 10601
51001, 110050
620060, 1151501
7352101, 12135070
85656080, 128702801
		

Crossrefs

Combination of A081192 and A016190. Triangle A007318 (even /uneven rows). Partly same function as A015446. A001020 (as sum of pairs of 2n).A001019 (as difference of pairs of 2n)
Cf. A162849.

Programs

  • Mathematica
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,If[OddQ[n],c+10b,a+10b]}; NestList[nxt,{2,0,1,1},30][[All,2]] (* or *) LinearRecurrence[{0,20,0,-99},{0,1,1,10},30] (* Harvey P. Dale, May 03 2018 *)

Formula

a(n)=20*a(n-2)-99*a(n-4). G.f.: -x^2*(-1-x+10*x^2)/((3*x-1)*(3*x+1)*(11*x^2-1)). [From R. J. Mathar, Jul 13 2009]

Extensions

Edited by N. J. A. Sloane, Jun 30 2009
NAME adapted to offset. - R. J. Mathar, Jun 19 2021

A180689 Smallest power of 11 that begins with n.

Original entry on oeis.org

1, 214358881, 3138428376721, 4177248169415651, 505447028499293771, 61159090448414546291, 7400249944258160101211, 81402749386839761113321, 9849732675807611094711841, 108347059433883722041830251, 11, 121, 1331, 14641
Offset: 1

Views

Author

Daniel Mondot, Sep 17 2010

Keywords

Crossrefs

Extensions

a(14) from Michel Marcus, Aug 30 2013

A216156 Period of powers of 11 mod 10^n.

Original entry on oeis.org

10, 50, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000
Offset: 1

Views

Author

V. Raman, Sep 02 2012

Keywords

Comments

Essentially the same as A093143. - R. J. Mathar, Sep 06 2012
Also period of squares mod 10^n. - Mohammed Yaseen, Apr 18 2023

Examples

			a(2) = 50 because 11^50 = 11739085287969531650666649599035831993898213898723001 = 1 mod 1000.
		

Crossrefs

Programs

  • Mathematica
    Join[{10}, NestList[10*# &, 50, 20]] (* Paolo Xausa, Feb 20 2024 *)

Formula

a(n) = 5*10^(n-1), n >= 2.
Previous Showing 41-50 of 92 results. Next